1887

Abstract

Six bacterial strains were isolated from healthy marine organisms that were collected from the coast of the Kanto area in Japan. Phylogenetic analysis based on 16S rDNA sequence similarity showed that the six isolates formed a separate cluster in the - and were related to the genera and (<91·6 % similarity). The isolates were related closely to each other (DNA–DNA reassociation values of 74–93 %). The isolates had a polar flagellum and were Gram-negative, mesophilic, strictly aerobic rods that required salt for growth. Distinct phenotypic features of this group included the ability to hydrolyse agar and white pigmentation of colonies. The DNA G+C content of the isolates was 48–50 mol%. The major quinone was Q-8. Phenotypic characteristics of the isolates differed from those of members of the genera and . The name gen. nov., sp. nov. is proposed for the six isolates; the type strain is MKT 106 (=IAM 14998=LMG 21761).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02778-0
2004-05-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/3/ijs540693.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02778-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Baumann P., Gauthier M. J., Baumann L. 1984; Genus Alteromonas Baumann, Baumann, Mandel and Allen 1972. In Bergey's Manual of Systematic Bacteriology vol 1 pp  343–352 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  3. Bowman J. P., McCammon S. A., Brown J. L., McMeekin T. A. 1998; Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov., psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Bacteriol 48:1213–1222 [CrossRef]
    [Google Scholar]
  4. Collins M. D., Jones D. 1981; A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 51:129–134 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Hiraishi A. 1992; Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213 [CrossRef]
    [Google Scholar]
  8. Kurahashi M., Yokota A. 2002; A preliminary report of phylogenetic diversity of bacterial strains isolated from marine creatures. J Gen Appl Microbiol 48:251–259 [CrossRef]
    [Google Scholar]
  9. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  10. Romanenko L. A., Zhukova N. V., Rohde M., Lysenko A. M., Mikhailov V. V., Stackebrandt E. 2003; Glaciecola mesophila sp. nov., a novel marine agar-digesting bacterium. Int J Syst Evol Microbiol 53:647–651 [CrossRef]
    [Google Scholar]
  11. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  12. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  13. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal_w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  14. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02778-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02778-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error