1887

Abstract

A novel thermophilic member of the family , designated strain 2M70-1, was isolated from the wall of an active white smoker chimney collected in the Soria Moria vent field at 71 °N in the Norwegian–Greenland Sea. Cells of the strain were Gram-negative, non-motile rods. Growth was observed at 37–75 °C (optimum 65 °C), at pH 6–8 (optimum pH 7.3) and in 1–5 % (w/v) NaCl (optimum 2.5–3.5 %). The isolate was aerobic but could also grow anaerobically using nitrate or elemental sulfur as electron acceptors. The strain was obligately heterotrophic, growing on complex organic substrates like yeast extract, Casamino acids, tryptone and peptone. Pyruvate, acetate, butyrate, sucrose, rhamnose and maltodextrin were used as complementary substrates. The G+C content of the genomic DNA was 68 mol%. Cells possessed characteristic phospholipids and glycolipids. Major fatty acids constituted saturated and unsaturated iso-branched and saturated anteiso-branched forms. Menaquinone 8 was the sole respiratory lipoquinone. Phylogenetic analysis of 16S rRNA gene sequences placed the strain in the family in the phylum’, which is consistent with the chemotaxonomic data. On the basis of phenotypic and phylogenetic data, strain 2M70-1 ( = JCM 15963  = DSM 22268) represents the type strain of a novel species of a novel genus, for which the name gen. nov., sp. nov. is proposed.

Funding
This study was supported by the:
  • Norwegian Research Council
  • BioDeep (Award 160932)
  • EuroMARC project ‘H2DEEP’
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.027839-0
2011-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2197.html?itemId=/content/journal/ijsem/10.1099/ijs.0.027839-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J. H., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Anderson R., Hansen K. 1985; Structure of a novel phosphoglycolipid from Deinococcus radiodurans . J Biol Chem 260:12219–12223[PubMed]
    [Google Scholar]
  3. Anisimova M., Gascuel O. 2006; Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552 [View Article][PubMed]
    [Google Scholar]
  4. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296[PubMed]
    [Google Scholar]
  5. Baross J. A. 1995; Isolation, growth and maintenance of hyperthermophiles. In Archaea: a Laboratory Manual. Thermophiles pp. 15–23 Edited by Robb F. T., Place A. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  6. Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Wheeler D. L. 2008; GenBank. Nucleic Acids Res 36:Database issueD25–D30 [View Article][PubMed]
    [Google Scholar]
  7. Brock T. D., Edwards M. R. 1970; Fine structure of Thermus aquaticus, an extreme thermophile. J Bacteriol 104:509–517[PubMed]
    [Google Scholar]
  8. Brock T. D., Freeze H. 1969; Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297[PubMed]
    [Google Scholar]
  9. Campanella J. J., Bitincka L., Smalley J. 2003; MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4:29–32 [View Article][PubMed]
    [Google Scholar]
  10. Carreto L., Wait R., Nobre M. F., da Costa M. S. 1996; Determination of the structure of a novel glycolipid from Thermus aquaticus 15004 and demonstration that hydroxy fatty acids are amide linked to glycolipids in Thermus spp.. J Bacteriol 178:6479–6486[PubMed]
    [Google Scholar]
  11. Da Costa M. S., Rainey F. A. 2001; Family I. Thermaceae fam. nov.. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 1 pp. 403–404 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  12. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.-F., Guindon S., Lefort V. et al. 2008; Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:Web Server issueW465–W469 [View Article][PubMed]
    [Google Scholar]
  13. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853 [View Article][PubMed]
    [Google Scholar]
  14. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  15. Ferreira A. M., Wait R., Nobre M. F., da Costa M. S. 1999; Characterization of glycolipids from Meiothermus spp.. Microbiology 145:1191–1199 [View Article][PubMed]
    [Google Scholar]
  16. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [View Article][PubMed]
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 211–232 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  18. Kieft T. L., Fredrickson J. K., Onstott T. C., Gorby Y. A., Kostandarithes H. M., Bailey T. J., Kennedy D. W., Li S. W., Plymale A. E. et al. 1999; Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221[PubMed]
    [Google Scholar]
  19. Leone S., Molinaro A., Lindner B., Romano I., Nicolaus B., Parrilli M., Lanzetta R., Holst O. 2006; The structures of glycolipids isolated from the highly thermophilic bacterium Thermus thermophilus Samu-SA1. Glycobiology 16:766–775 [View Article][PubMed]
    [Google Scholar]
  20. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  21. Mandel M., Igambi L., Bergendahl J., Dodson M. L. Jr, Scheltgen E. 1970; Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 101:333–338[PubMed]
    [Google Scholar]
  22. Marmur J. 1963; A procedure for the isolation of deoxyribonucleic acid from microorganisms. Methods Enzymol 6:726–738 [View Article][PubMed]
    [Google Scholar]
  23. Miroshnichenko M. L., L’Haridon S., Jeanthon C., Antipov A. N., Kostrikina N. A., Tindall B. J., Schumann P., Spring S., Stackebrandt E., Bonch-Osmolovskaya E. A. 2003a; Oceanithermus profundus gen. nov., sp. nov., a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:747–752 [View Article][PubMed]
    [Google Scholar]
  24. Miroshnichenko M. L., L’Haridon S., Nercessian O., Antipov A. N., Kostrikina N. A., Tindall B. J., Schumann P., Spring S., Stackebrandt E. et al. 2003b; Vulcanithermus mediatlanticus gen. nov., sp. nov., a novel member of the family Thermaceae from a deep-sea hot vent. Int J Syst Evol Microbiol 53:1143–1148 [View Article][PubMed]
    [Google Scholar]
  25. Mori K., Kakegawa T., Higashi Y., Nakamura K., Maruyama A., Hanada S. 2004; Oceanithermus desulfurans sp. nov., a novel thermophilic, sulfur-reducing bacterium isolated from a sulfide chimney in Suiyo Seamount. Int J Syst Evol Microbiol 54:1561–1566 [View Article][PubMed]
    [Google Scholar]
  26. Nobre M. F., Trüper H. G., da Costa M. S. 1996; Transfer of Thermus ruber (Loginova et al. 1994), Thermus silvanus (Tenreiro et al. 1995), and Thermus chliarophilus (Tenreiro et al. 1995) to Meiothermus gen. nov. as Meiothermus ruber comb. nov., Meiothermus silvanus comb. nov., and Meiothermus chliarophilus comb. nov., respectively, and emendation of the genus Thermus . Int J Syst Bacteriol 46:604–606 [View Article]
    [Google Scholar]
  27. Pedersen R. B., Thorseth I. H., Nygaard T. E., Lilley M., Kelley D. 2010; Hydrothermal activity at the Arctic Mid-Ocean Ridge. In Diversity of Hydrothermal Systems on Slow-Spreading Ocean Ridges, Geophysical Monograph vol. 188 pp. 67–89 Edited by Rona P., Devey C., Dyment J., Murton B. Washington, DC: American Geophysical Union; [CrossRef]
    [Google Scholar]
  28. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . Nucleic Acids Res 35:7188–7196 [View Article][PubMed]
    [Google Scholar]
  29. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  30. Sako Y., Nakagawa S., Takai K., Horikoshi K. 2003; Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:59–65 [View Article][PubMed]
    [Google Scholar]
  31. Steinsbu B. O., Thorseth I. H., Nakagawa S., Inagaki F., Lever M. A., Engelen B., Øvreås L., Pedersen R. B. 2010; Archaeoglobus sulfaticallidus sp. nov., a thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids. Int J Syst Evol Microbiol 60:2745–2752 [View Article]
    [Google Scholar]
  32. Suzuki M. T., Giovannoni S. J. 1996; Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630[PubMed]
    [Google Scholar]
  33. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  34. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  35. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  36. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology pp. 330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn. pp. 3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer; [CrossRef]
    [Google Scholar]
  38. Williams R. A. D., Da Costa M. S. 1992; The genus Thermus and related microorganisms. In The Prokaryotes, 2nd edn. vol. 1 pp. 3746–3751 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  39. Yang Y.-L., Yang F.-L., Jao S.-C., Chen M.-Y., Tsay S.-S., Zou W., Wu S.-H. 2006; Structural elucidation of phosphoglycolipids from strains of the bacterial thermophiles Thermus and Meiothermus . J Lipid Res 47:1823–1832 [View Article][PubMed]
    [Google Scholar]
  40. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K.-H., Ludwig W., Glöckner F. O., Rosselló-Móra R. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.027839-0
Loading
/content/journal/ijsem/10.1099/ijs.0.027839-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error