1887

Abstract

A novel thermophilic bacterium, strain EP1-55-1%, was isolated from an colonization system deployed in a superheated, deep-sea, hydrothermal vent emission at the Kairei Field on the Central Indian Ridge in the Indian Ocean. The cells were highly motile rods, each possessing a single polar flagellum. Growth was observed between 35 and 65 °C (optimum temperature, 55 °C; 70 min doubling time) and between pH 4·9 and 7·2 (optimum, pH 5·9). The isolate was a microaerobic-to-anaerobic chemolithoautotroph capable of using molecular hydrogen as the sole energy source and carbon dioxide as the sole carbon source. Molecular oxygen, nitrate or elemental sulfur (S) could serve as electron acceptors to support growth. The G+C content of the genomic DNA was 34·6 mol%. Phylogenetic analysis based on 16S rDNA sequences indicated that strain EP1-55-1% represents the first strain for which taxonomic properties have been characterized within the previously uncultivated phylogroup classified as belonging to the uncultivated - group A; the name gen. nov., sp. nov. is proposed, with strain EP1-55-1% (=JCM 11971=ATCC BAA-737) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02787-0
2004-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/1/ijs540025.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02787-0&mimeType=html&fmt=ahah

References

  1. Alain K., Querellou J., Lesongeur F., Pignet P., Crassous P., Raguénès G., Cueff V, Cambon-Bonavita M.-A. 2002; Caminibacter hydrogeniphilus gen. nov., sp. nov. a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323 [CrossRef]
    [Google Scholar]
  2. Allen S. E., Grimshaw H. M., Parkinson J. A., Quarmby C. 1974; Inorganic constituents: nitrogen. In Chemical Analysis of Ecological Materials pp  184–206 Edited by Allen S. E. London: Blackwell Scientific;
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  5. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F. F. 1998; Genbank. Nucleic Acids Res 26:1–7 [CrossRef]
    [Google Scholar]
  6. Campbell B. J., Jeanthon C., Kostka J. E., Luther G. W. III, Cary S. C. 2001; Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67:4566–4572 [CrossRef]
    [Google Scholar]
  7. Cary S. C., Cottrell M. T., Stein J. L., Camacho F., Desbruyeres D. 1997; Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana . Appl Environ Microbiol 63:1124–1130
    [Google Scholar]
  8. Corre E., Reysenbach A.-L., Prieur D. 2001; ε -Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol Lett 205:329–335
    [Google Scholar]
  9. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1993 phylip: phylogenetic inference package, version 3.5. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  11. Gamo T., Chiba H., Yamanaka T. 9 other authors 2001; Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge. Earth Planet Sci Lett 193:371–379 [CrossRef]
    [Google Scholar]
  12. Hashimoto J., Ohta S., Gamo T. 7 other authors 2001; First hydrothermal vent communities from the Indian Ocean discovered. Zool Sci 18:717–721 [CrossRef]
    [Google Scholar]
  13. Inagaki F., Takai K., Kobayashi H., Nealson K. H., Horikoshi K. 2003; Sulfurimonas autotrophica gen. nov., sp. nov. a novel sulfur-oxidizing ε -proteobacterium isolated from hydrothermal sediments in the mid-Okinawa Trough. Int J Syst Evol Microbiol 53:1801–1805 [CrossRef]
    [Google Scholar]
  14. Lane D. J. 1985; 16S/23S sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–176 Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  15. Longnecker K., Reysenbach A.-L. 2001; Expansion of the geographic distribution of a novel lineage of ε -Proteobacteria to a hydrothermal vent site on the southern East Pacific Rise. FEMS Microbiol Lett 35:287–293
    [Google Scholar]
  16. Maidak B. L., Cole J. R., Lilburn T. G. 9 other authors 2000; The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28:173–174 [CrossRef]
    [Google Scholar]
  17. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  18. Miroshnichenko M. L., Kostrikina N. A., L'Haridon S., Jeanthon C., Hippe H., Stackebrandt E., Bonch-Osmolovskaya E. A. 2002; Nautilia lithotrophica gen. nov., sp. nov. a thermophilic sulfur-reducing ε -proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1299–1304 [CrossRef]
    [Google Scholar]
  19. Moyer C. L., Dobbs F. C., Karl D. M. 1995; Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount. Hawaii. Appl Environ Microbiol 61:1555–1562
    [Google Scholar]
  20. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  21. Reysenbach A.-L., Longnecker K., Kirshtein J. 2000; Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806 [CrossRef]
    [Google Scholar]
  22. Sako Y., Takai K., Ishida Y., Uchida A., Katayama Y. 1996; Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46:1099–1104 [CrossRef]
    [Google Scholar]
  23. Takai K., Fujiwara Y. 2002; Hydrothermal vents: biodiversity in deep-sea hydrothermal vents. In Encyclopedia of Environmental Microbiology pp  1604–1617 Edited by Bitton G. New York: Wiley;
    [Google Scholar]
  24. Takai K., Horikoshi K. 2000; Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17 [CrossRef]
    [Google Scholar]
  25. Takai K., Inoue A., Horikoshi K. 1999; Thermaerobacter marianensis gen. nov. sp. nov. an aerobic extremely thermophilic marine bacterium from the 11 000 m deep Mariana Trench. Int J Syst Bacteriol 49619–628 [CrossRef]
    [Google Scholar]
  26. Takai K., Komatsu T., Horikoshi K. 2001; Hydrogenobacter subterraneus sp. nov., an extremely thermophilic, heterotrophic bacterium unable to grow on hydrogen gas, from deep subsurface geothermal water. Int J Syst Evol Microbiol 51:1425–1435
    [Google Scholar]
  27. Takai K., Inoue A., Horikoshi K. 2002; Methanothermococcus okinawensis sp. nov., a thermophilic methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52:1089–1095 [CrossRef]
    [Google Scholar]
  28. Takai K., Inagaki F., Nakagawa S., Hirayama H., Nunoura T., Sako Y., Nealson K. H., Horikoshi K. 2003a; Isolation and phylogenetic diversity of members of previously uncultivated ε - Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174
    [Google Scholar]
  29. Takai K., Kobayashi H., Nealson K. H., Horikoshi K. 2003b; Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:839–846 [CrossRef]
    [Google Scholar]
  30. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  31. Zillig W., Holz I., Janekovic D. 7 other authors 1990; Hyperthermus butylicus , a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02787-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02787-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error