1887

Abstract

Two strains of aerobic methanotrophic bacteria, AR4 and SOP9, were isolated from acidic (pH 3.8–4.0) peat bogs in Russia. Another phenotypically similar isolate, strain LAY, was obtained from an acidic (pH 4.0) forest soil in Germany. Cells of these strains were Gram-negative, non-pigmented, non-motile, thin rods that multiplied by irregular cell division and formed rosettes or amorphous cell conglomerates. Similar to species, strains AR4, SOP9 and LAY possessed only a soluble form of methane monooxygenase (sMMO) and lacked intracytoplasmic membranes. Growth occurred only on methane and methanol; the latter was the preferred growth substrate. mRNA transcripts of sMMO were detectable in cells when either methane or both methane and methanol were available. Carbon was assimilated via the serine and ribulose-bisphosphate (RuBP) pathways; nitrogen was fixed via an oxygen-sensitive nitrogenase. Strains AR4, SOP9 and LAY were moderately acidophilic, mesophilic organisms capable of growth between pH 3.5 and 7.2 (optimum pH 4.8–5.2) and at 4–33 °C (optimum 20–23 °C). The major cellular fatty acid was 18 : 1ω7 and the quinone was Q-10. The DNA G+C content was 55.6–57.5 mol%. The isolates belonged to the family of the class and were most closely related to the sMMO-possessing methanotrophs of the genus (96.4–97.0 % 16S rRNA gene sequence similarity), particulate MMO (pMMO)-possessing methanotrophs of the genus (96.1–97.0 %), facultative methylotrophs of the genus (96.1–96.3 %) and non-methanotrophic organotrophs of the genus (96.5–97.0 %). Phenotypically, strains AR4, SOP9 and LAY were most similar to species, but differed from members of this genus by cell morphology, greater tolerance of low pH, detectable activities of RuBP pathway enzymes and inability to grow on multicarbon compounds. Therefore, we propose a novel genus and species, gen. nov., sp. nov., to accommodate strains AR4, SOP9 and LAY. Strain AR4 ( = DSM 22108  = LMG 25277  = VKM B-2543) is the type strain of .

Funding
This study was supported by the:
  • Program ‘Molecular and Cell Biology’ of the Russian Academy of Sciences
  • RosNauka project (Award 02.740.11.0023)
  • Alberta Innovates-Technology Futures New Faculty Award
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028118-0
2011-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/10/2456.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028118-0&mimeType=html&fmt=ahah

References

  1. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E. 2000; Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266 [View Article][PubMed]
    [Google Scholar]
  2. Belova S. E., Baani M., Suzina N. E., Bodelier P. L. E., Liesack W., Dedysh S. N. 2011; Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp.. Environ Microbiol Reports 3:36–46 [CrossRef]
    [Google Scholar]
  3. Chen Y., Crombie A., Rahman M. T., Dedysh S. N., Liesack W., Stott M. B., Alam M., Theisen A. R., Murrell J. C., Dunfield P. F. 2010; Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol 192:3840–3841 [View Article][PubMed]
    [Google Scholar]
  4. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:329–366 [View Article]
    [Google Scholar]
  5. Costello A. M., Lidstrom M. E. 1999; Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074[PubMed]
    [Google Scholar]
  6. Dedysh S. N., Dunfield P. F. 2010; Facultative methane oxidizers. In Handbook of Hydrocarbon and Lipid Microbiology pp. 1967–1976 Edited by Timmis K. N. Berlin: Springer; [View Article]
    [Google Scholar]
  7. Dedysh S. N., Liesack W., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Bares A. M., Panikov N. S., Tiedje J. M. 2000; Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969 [View Article][PubMed]
    [Google Scholar]
  8. Dedysh S. N., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Liesack W., Tiedje J. M. 2002; Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261[PubMed]
    [Google Scholar]
  9. Dedysh S. N., Berestovskaya Y. Y., Vasylieva L. V., Belova S. E., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Liesack W., Zavarzin G. A. 2004a; Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156 [View Article][PubMed]
    [Google Scholar]
  10. Dedysh S. N., Ricke P., Liesack W. 2004b; NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology 150:1301–1313 [View Article][PubMed]
    [Google Scholar]
  11. Dedysh S. N., Knief C., Dunfield P. F. 2005a; Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670 [View Article][PubMed]
    [Google Scholar]
  12. Dedysh S. N., Smirnova K. V., Khmelenina V. N., Suzina N. E., Liesack W., Trotsenko Y. A. 2005b; Methylotrophic autotrophy in Beijerinckia mobilis . J Bacteriol 187:3884–3888 [View Article][PubMed]
    [Google Scholar]
  13. Dunfield P. F., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Dedysh S. N. 2003; Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239 [View Article][PubMed]
    [Google Scholar]
  14. Dunfield P. F., Belova S. E., Vorob’ev A. V., Cornish S. L., Dedysh S. N. 2010; Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa . Int J Syst Evol Microbiol 60:2659–2664 [View Article][PubMed]
    [Google Scholar]
  15. Graham D. W., Korich D. G., LeBlanc R. P., Sinclair N. A., Arnold R. G. 1992; Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol 58:2231–2236[PubMed]
    [Google Scholar]
  16. Hanson R. S., Hanson T. E. 1996; Methanotrophic bacteria. Microbiol Rev 60:439–471[PubMed]
    [Google Scholar]
  17. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. 1995; Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208 [View Article][PubMed]
    [Google Scholar]
  18. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of the coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  19. Kolb S., Knief C., Stubner S., Conrad R. 2003; Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69:2423–2429 [View Article][PubMed]
    [Google Scholar]
  20. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  21. McDonald I. R., Murrell J. C. 1997; The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63:3218–3224[PubMed]
    [Google Scholar]
  22. McDonald I. R., Kenna E. M., Murrell J. C. 1995; Detection of methanotrophic bacteria in environmental samples with the PCR. Appl Environ Microbiol 61:116–121[PubMed]
    [Google Scholar]
  23. Miguez C. B., Bourque D., Sealy J. A., Greer C. W., Groleau D. 1997; Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR). Microb Ecol 33:21–31 [View Article][PubMed]
    [Google Scholar]
  24. Op den Camp H. J. M., Islam T., Stott M. B., Harhangi H. R., Hynes A., Schouten S., Jetten M. S. M., Birkeland N.-K., Pol A., Dunfield P. F. 2009; Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia . Environ Microbiol Reports 1:293–306 [View Article]
    [Google Scholar]
  25. Owen R. J., Hill L. R., Lapage S. P. 1969; Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7:503–516 [View Article][PubMed]
    [Google Scholar]
  26. Radajewski S., Ineson P., Parekh N. R., Murrell J. C. 2000; Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649 [View Article][PubMed]
    [Google Scholar]
  27. Radajewski S., Webster G., Reay D. S., Morris S. A., Ineson P., Nedwell D. B., Prosser J. I., Murrell J. C. 2002; Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology 148:2331–2342[PubMed]
    [Google Scholar]
  28. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212 [View Article][PubMed]
    [Google Scholar]
  29. Shigematsu T., Hanada S., Eguchi M., Kamagata Y., Kanagawa T., Kurane R. 1999; Soluble methane monooxygenase gene clusters from trichloroethylene-degrading Methylomonas sp. strains and detection of methanotrophs during in situ bioremediation. Appl Environ Microbiol 65:5198–5206[PubMed]
    [Google Scholar]
  30. Spiridonova E. M., Berg I. A., Kolganova T. V., Ivanovsky R. N., Kuznetsov B. B., Turova T. P. 2004; An oligonucleotide primer system for amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Microbiology [English translation of Mikrobiologiia] 73:316–325[PubMed]
    [Google Scholar]
  31. Theisen A. R., Ali M. H., Radajewski S., Dumont M. G., Dunfield P. F., McDonald I. R., Dedysh S. N., Miguez C. B., Murrell J. C. 2005; Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692 [View Article][PubMed]
    [Google Scholar]
  32. Vorob’ev A. V., de Boer W., Folman L. B., Bodelier P. L. E., Doronina N. V., Suzina N. E., Trotsenko Y. A., Dedysh S. N. 2009; Methylovirgula ligni gen. nov., sp. nov., an obligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. Int J Syst Evol Microbiol 59:2538–2545 [View Article][PubMed]
    [Google Scholar]
  33. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028118-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028118-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error