1887

Abstract

A novel hyperthermophilic archaeon, designated strain SY1, was isolated from a deep-sea hydrothermal vent chimney sample collected from the Suiyo Seamount in the Izu-Bonin Arc, Japan, at a depth of 1385 m. The cells were irregular cocci (1·2 to 2·1 μm in diameter), occurring singly or in pairs, and stained Gram-negative. Growth was observed between 70 and 97 °C (optimum, 85 °C; 220 min doubling time), pH 6·5 and 8·8 (optimum, pH 8·0), and salinity of 2·2 and 5·3 % (optimum, 3·5 %). It was a strictly aerobic heterotroph capable of growing on complex proteinaceous substrates such as yeast extract and tryptone. The G+C content of the genomic DNA was 54·4 mol%. Phylogenetic analysis based on the 16S rDNA sequence of the isolate indicated that the isolate was closely related to strain K1. However, no significant genetic relatedness was observed between them by DNA–DNA hybridization. On the basis of the molecular and physiological traits of the new isolate, the name sp. nov. is proposed, with the type strain SY1 (=JCM 12091=ATCC BAA-758).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02826-0
2004-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/2/ijs540329.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02826-0&mimeType=html&fmt=ahah

References

  1. Amo T., Paje M. L. F., Inagaki A., Ezaki S., Atomi H., Imanaka T. 2002; Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows under atmospheric air. Archaea 1:113–121 [CrossRef]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  3. Blöchl E., Rachel R., Burggraf S., Jannasch H. W., Stetter K. O. 1997; Pyrolobus fumarii , gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit of life to 113 °C. Extremophiles 1:14–21 [CrossRef]
    [Google Scholar]
  4. Burggraf S., Jannasch H. W., Nicolaus B., Stetter K. O. 1990; Archaeoglobus profundus , sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst Appl Microbiol 13:24–28 [CrossRef]
    [Google Scholar]
  5. Burggraf S., Larsen N., Woese C. R., Stetter K. O. 1993; An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum . Proc Natl Acad Sci U S A 90:2547–2550 [CrossRef]
    [Google Scholar]
  6. Canganella F., Jones W. J., Gambacorta A., Antranikian G. 1998; Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Int J Syst Bacteriol 48:1181–1185 [CrossRef]
    [Google Scholar]
  7. Daimon K., Kawarabayasi Y., Kikuchi H., Sako Y., Ishino Y. 2002; Three proliferating cell nuclear antigen-like proteins found in the hyperthermophilic archaeon Aeropyrum pernix : interactions with the two DNA polymerases. J Bacteriol 184:687–694 [CrossRef]
    [Google Scholar]
  8. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  9. Erauso G., Reysenbach A.-L., Godfroy A. 8 other authors 1993; Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  11. Fiala G., Stetter K. O., Jannasch H. W., Langworthy T. A., Madon J. 1986; Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 °C. Syst Appl Microbiol 8:106–113 [CrossRef]
    [Google Scholar]
  12. Godfroy A., Lesongeur F., Raguenes G., Querellou J., Antoine E., Meunier J. R., Guezennec J., Barbier G. 1997; Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 47:622–626 [CrossRef]
    [Google Scholar]
  13. González J. M., Kato C., Horikoshi K. 1995; Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol 164:159–164 [CrossRef]
    [Google Scholar]
  14. González J. M., Masuchi Y., Robb F. T., Ammerman J. W., Maeder D. L., Yanagibayashi M., Tamaoka J., Kato C. 1998; Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2:123–130 [CrossRef]
    [Google Scholar]
  15. Grogan D., Palm P., Zillig W. 1990; Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus , Sulfolobus shibatae , sp. nov. Arch Microbiol 154:594–599
    [Google Scholar]
  16. Hansen T., Reichstein B., Schmid R., Schonheit P. 2002; The first archaeal ATP-dependent glucokinase, from the hyperthermophilic crenarchaeon Aeropyrum pernix , represents a monomeric, extremely thermophilic ROK glucokinase with broad hexose specificity. J Bacteriol 184:5955–5965 [CrossRef]
    [Google Scholar]
  17. Huber H., Stetter K. O. 2001; Family I. Desulfurococcaceae . In Bergey's Manual of Systematic Bacteriology , 2nd edn, vol. 1 ( The Archaea and the Deeply Branching and Phototrophic Bacteria ) pp  180–181 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  18. Itoh T., Suzuki K., Nakase T. 1998; Occurrence of introns in the 16S rRNA genes of members of the genus Thermoproteus . Arch Microbiol 170:155–161 [CrossRef]
    [Google Scholar]
  19. Jan R. L., Wu J., Chaw S. M., Tsai C. W., Tsen S. D. 1999; A novel species of thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov. Int J Syst Bacteriol 49:1809–1816 [CrossRef]
    [Google Scholar]
  20. Jeon S. J., Ishikawa K. 2002; Identification and characterization on thioredoxin and thioredoxin reductase from Aeropyrum pernix K1. Eur J Biochem 269:5423–5430 [CrossRef]
    [Google Scholar]
  21. Kashefi K., Tor J. M., Holmes D. E., Gaw Van Praagh C. V., Reysenbach A.-L., Lovley D. R. 2002; Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron accepter. Int J Syst Evol Microbiol 52:719–728 [CrossRef]
    [Google Scholar]
  22. Kawarabayasi Y., Hino Y., Horikawa H. 22 other authors 1999; Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 6: 83–101; 145–152
    [Google Scholar]
  23. Kurosawa N., Itoh Y. H., Iwai T., Sugai A., Uda I., Kimura N., Horiuchi T., Itoh T. 1998; Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales . Int J Syst Bacteriol 48:451–456 [CrossRef]
    [Google Scholar]
  24. Lane D. J. 1985; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  25. Lauerer G., Kristjánsson J. K., Langworthy T. A., König H., Stetter K. O. 1986; Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8:100–105 [CrossRef]
    [Google Scholar]
  26. Lykke-Andersen J., Aagaard C., Seminenkov M., Garrett G. A. 1997; Archaeal introns: splicing, intercellular mobility and evolution. Trends Biochem Sci 22:326–331 [CrossRef]
    [Google Scholar]
  27. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  28. Marteinsson V. T., Birrien J. L., Kristjánsson J. K., Prieur D. 1995; First isolation of thermophilic aerobic nonsporulating heterotrophic bacteria from deep-sea hydrothermal vents. FEMS Microbiol Ecol 18:163–174 [CrossRef]
    [Google Scholar]
  29. Marteinsson V. T., Birrien J. L., Raguénès G., da Costa M. S., Prieur D. 1999; Isolation and characterization of Thermus thermophilus Gy1211 from a deep-sea hydrothermal vent. Extremophiles 3:247–251 [CrossRef]
    [Google Scholar]
  30. Miroshnichenko M. L., L'Haridon S., Jeanthon C. 7 other authors 2003a; Oceanithermus profundus gen. nov., sp. nov. a thermophilic, microaerophilic facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:747–752 [CrossRef]
    [Google Scholar]
  31. Miroshnichenko M. L., L'Haridon S., Nercessian O. & 8 other authors (2003b). Vulcanithermus mediatlanticus gen. nov., sp. nov., a novel member of the family Thermaceae from a deep-sea hot vent. Int J Syst Evol Microbiol 53:11443–1148
    [Google Scholar]
  32. Nakagawa S., Takai K., Horikoshi K., Sako Y. 2003; Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:863–869 [CrossRef]
    [Google Scholar]
  33. Nomura N., Sako Y., Uchida A. 1998; Molecular characterization and postsplicing fate of three introns within the single rRNA operon of the hyperthermophilic archaeon Aeropyrum pernix K1. J Bacteriol 180:3635–3643
    [Google Scholar]
  34. Nomura N., Morinaga Y., Kogishi T., Kim E. J., Sako Y., Uchida A. 2002; Heterogeneous yet similar introns reside in identical positions of the rRNA genes in natural isolates of the archaeon Aeropyrum pernix . Gene 295:43–50 [CrossRef]
    [Google Scholar]
  35. Pley U., Schipka J., Gambacorta A., Jannasch H. W., Fricke H., Rachel R., Stetter K. O. 1991; Pyrodictium abyssi , sp. nov., represents a novel heterotrophic marine archaeal hyperthermophile growing at 110 °C. Syst Appl Microbiol 14:245–253 [CrossRef]
    [Google Scholar]
  36. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  37. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  38. Sako Y., Nomura N., Uchida A., Ishida Y., Morii H., Koga Y., Hoaki T., Maruyama A. 1996a; Aeropyrum pernix gen. nov., sp. nov. a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 °C. Int J Syst Bacteriol 46:1070–1077 [CrossRef]
    [Google Scholar]
  39. Sako Y., Takai K., Ishida Y., Uchida A., Katayama Y. 1996b; Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46:1099–1104 [CrossRef]
    [Google Scholar]
  40. Sako Y., Croocker P. C., Ishida Y. 1997; An extremely heat-stable extracellular proteinase (aeropyrolysin) from the hyperthermophilic archaeon Aeropyrum pernix K1. FEBS Lett 415:329–334 [CrossRef]
    [Google Scholar]
  41. Sako Y., Nunoura T., Uchida A. 2001; Pyrobaculum oguniense sp. nov., a novel facultatively aerobic and hyperthermophilic archaeon growing at up to 97 °C. Int J Syst Evol Microbiol 51:303–309
    [Google Scholar]
  42. Sako Y., Nakagawa S., Takai K., Horikoshi K. 2003; Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:59–65 [CrossRef]
    [Google Scholar]
  43. Segerer A., Neuner A. M., Kristjansson J. K., Stetter K. O. 1986; Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov. facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564 [CrossRef]
    [Google Scholar]
  44. Suzuki T., Iwasaki T., Uzawa T., Hara K., Nemoto N., Kon T., Ueki T., Yamagishi A., Oshima T. 2002; Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6:39–44 [CrossRef]
    [Google Scholar]
  45. Tachibana A., Yano Y., Otani S., Nomura N., Sako Y., Taniguchi M. 2000; Novel prenyltransferase gene encoding farnesylgeranyl diphosphate syntheses from a hyperthermophilic archaeon, Aeropyrum pernix . Molecular evolution with alteration in product specificity. Eur J Biochem 267:321–328 [CrossRef]
    [Google Scholar]
  46. Takai K., Horikoshi K. 1999a; Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297
    [Google Scholar]
  47. Takai K., Horikoshi K. 1999b; Molecular phylogenetic analysis of archaeal intron-containing genes coding for rRNA obtained from a deep-subsurface geothermal water pool. Appl Environ Microbiol 65:5586–5589
    [Google Scholar]
  48. Takai K., Sako Y. 1999; A molecular view of archaeal diveristy in marine and terrestrial hot water environments. FEMS Microbiol Ecol 28:177–188 [CrossRef]
    [Google Scholar]
  49. Takai K., Sugai A., Itoh T., Horikoshi K. 2000; Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500 [CrossRef]
    [Google Scholar]
  50. Takai K., Kobayashi H., Nealson K. H., Horikoshi K. 2003a; Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:823–827 [CrossRef]
    [Google Scholar]
  51. Takai K., Inagaki F., Nakagawa S., Hirayama H., Nunoura T., Sako Y., Nealson K. H., Horikoshi K. 2003b; Isolation and phylogenetic diversity of members of previously uncultivated ε -Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174
    [Google Scholar]
  52. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  53. Thompson L. D., Daniels C. J. 1988; A tRNATrp intron endonuclease from Halobacterium volcanii : unique substrate recognition properties. J Biol Chem 263:17951–17959
    [Google Scholar]
  54. Thompson T. D., Gibosn T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  55. Yamano S., Sako Y., Nomura N., Maruyama T. 1999; A cambialistic SOD in a strictly aerobic hyperthermophilic archaeon, Aeropyrum pernix . J Biochem (Tokyo) 126:218–225 [CrossRef]
    [Google Scholar]
  56. Zillig W., Stetter K. O., Wunderl S., Schulz W., Priess H., Scholz I. 1980; The Sulfolobus -“ Caldariella ” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269 [CrossRef]
    [Google Scholar]
  57. Zillig W., Yeats S., Holz I., Bock A., Rettenberger M., Gropp F., Simon G. 1986; Desulfurolobus ambivalens , gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 8:197–203 [CrossRef]
    [Google Scholar]
  58. Zillig W., Holz I., Janekovic D. 7 other authors 1990; Hyperthermus butylicus , a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02826-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02826-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error