1887

Abstract

A novel methanotroph, designated strain E10, was isolated from a rice paddy field in Uruguay. Strain E10 grew on methane and methanol as sole carbon and energy sources. Cells were Gram-negative, non-motile, non-pigmented, slightly curved rods showing type I intracytoplasmic membranes arranged in stacks. The strain was neutrophilic and mesophilic; optimum growth occurred at 30–35 °C with no growth above 37 °C. The strain possessed only a particulate methane monooxygenase (). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain was most closely related to the moderately thermophilic strains OR2 (91.6 % sequence similarity) and Bath (91.5 %). Comparative sequence analysis of genes also confirmed that strain E10 formed a new lineage among the genera and with 89 and 84 % derived amino acid sequence identity to Bath and VKM-14L, respectively. The DNA G+C content was 63.1 mol% and the major cellular fatty acid was C (62.05 %). Thus, strain E10 ( = JCM 16910  = DSM 23452) represents the type strain of a novel species within a new genus, for which the name gen. nov., sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028274-0
2011-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2568.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028274-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E. 2000; Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266 [View Article][PubMed]
    [Google Scholar]
  3. Bodrossy L., Holmes E. M., Holmes A. J., Kovács K. L., Murrell J. C. 1997; Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov.. Arch Microbiol 168:493–503 [View Article][PubMed]
    [Google Scholar]
  4. Bowman J. 2006; The Methanotrophs – the families Methylococcaceae and Methylocystaceae . In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn. vol. 5 pp. 266–289 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer; [View Article]
    [Google Scholar]
  5. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. 1993; Revised taxonomy of the Methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I Methanotrophs. Int J Syst Bacteriol 43:735–753 [View Article]
    [Google Scholar]
  6. Bowman J. P., Sly L. I., Stackebrandt E. 1995; The phylogenetic position of the family Methylococcaceae . Int J Syst Bacteriol 45:182–185 [View Article][PubMed]
    [Google Scholar]
  7. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  8. Eshinimaev B. Ts., Medvedkova K. A., Khmelenina V. N., Suzina N. E., Osipov G. A., Lysenko A. M., Trotsenko IuA. 2004; [New thermophilic methanotrophs of the genus Methylocaldum]. Mikrobiologiia 73:530–539 (in Russian) [PubMed]
    [Google Scholar]
  9. Ferrando L., Tarlera S. 2009; Activity and diversity of methanotrophs in the soil-water interface and rhizospheric soil from a flooded temperate rice field. J Appl Microbiol 106:306–316 [View Article][PubMed]
    [Google Scholar]
  10. Hanson R. S., Hanson T. E. 1996; Methanotrophic bacteria. Microbiol Rev 60:439–471[PubMed]
    [Google Scholar]
  11. Iguchi H., Yurimoto H., Sakai Y. 2011; Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. Int J Syst Evol Microbiol 61:810–815 [View Article][PubMed]
    [Google Scholar]
  12. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of the coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  14. Op den Camp H. J. M., Islam T., Stott M. B., Harhangi H. R., Hynes A., Schouten S., Jetten M. S. M., Birkeland N.-K., Pol A., Dunfield P. F. 2009; Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia . Environ Microbiol Reports 1:293–306 [View Article]
    [Google Scholar]
  15. Poly F., Monrozier L. J., Bally R. 2001; Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103 [View Article][PubMed]
    [Google Scholar]
  16. Stoecker K., Bendinger B., Schöning B., Nielsen P. H., Nielsen J. L., Baranyi C., Toenshoff E. R., Daims H., Wagner M. 2006; Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci U S A 103:2363–2367 [View Article][PubMed]
    [Google Scholar]
  17. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  18. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  19. Tsubota J., Eshinimaev B. Ts., Khmelenina V. N., Trotsenko Y. A. 2005; Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55:1877–1884 [View Article][PubMed]
    [Google Scholar]
  20. Vela G. R., Wyss O. 1964; Improved stain for visualization of Azotobacter encystment. J Bacteriol 87:476–477[PubMed]
    [Google Scholar]
  21. Vigliotta G., Nutricati E., Carata E., Tredici S. M., De Stefano M., Pontieri P., Massardo D. R., Prati M. V., De Bellis L., Alifano P. 2007; Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic γ-Proteobacterium. Appl Environ Microbiol 73:3556–3565 [View Article][PubMed]
    [Google Scholar]
  22. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218[PubMed] [CrossRef]
    [Google Scholar]
  23. Zhang Z., Schwartz S., Wagner L., Miller W. 2000; A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028274-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028274-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error