1887

Abstract

A water sample from the North Sea was used to isolate the abundant heterotrophic bacteria that are able to grow on complex marine media. Isolation was by serial dilution and spread plating. Phylogenetic analysis of nearly complete 16S rRNA gene sequences revealed that one of the strains, HEL-45, had 97·4 % sequence similarity to and 96·5 % sequence similarity to . Strain HEL-45 is a Gram-negative, non-motile rod and obligate aerobe and requires sodium and 1–7 % sea salts for growth. It contains storage granules and does not produce bacteriochlorophyll. Optimal growth temperatures are 25–30 °C. The DNA base composition (G+C content) is 60·1 mol%. Strain HEL-45 has Q10 as the dominant respiratory quinone. The major polar lipids are phosphatidyl glycerol, diphosphatidyl glycerol, phosphatidyl choline, phosphatidyl ethanolamine and an aminolipid. The fatty acids comprise 18 : 17, 18 : 0, 16 : 17, 16 : 0, 3-OH 10 : 0, 3-OH 12 : 1 (or 3-oxo 12 : 0) and traces of an 18 : 2 fatty acid. Among the hydroxylated fatty acids only 3-OH 12 : 1 (or 3-oxo 12 : 0) appears to be amide linked, whereas 3-OH 10 : 0 appears to be ester linked. The minor fatty acid components (between 1 and 7 %) allow three subgroups to be distinguished in the / clade, placing HEL-45 into a separate lineage characterized by the presence of 3-OH 12 : 1 (or 3-oxo 12 : 0) and both ester- and amide-linked 16 : 17 phospholipids. HEL-45 produces indole and derivatives thereof, several cyclic dipeptides and thryptanthrin. Phylogenetic analysis of 16S rRNA gene sequences and chemotaxonomic data support the description of a new genus and species, to include gen. nov., sp. nov., with the type strain HEL-45 (=DSM 14862=NCIMB 13983).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02850-0
2004-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/4/ijs541177.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02850-0&mimeType=html&fmt=ahah

References

  1. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  3. DeSoete G. 1983; A least squares algorithm for setting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  4. Eilers H., Pernthaler J., Peplies J., Glöckner F. O., Gerdts G., Amann R. 2001; Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67:5134–5142 [CrossRef]
    [Google Scholar]
  5. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1993 phylip (Phyogenetic Inference Package), version 3.5.1. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  7. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips R. B. 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Gilmour J. S. L. 1940; Taxonomy and philosophy. In The New Systematics pp  461–474 Edited by Huxley J. London: Systematics Association;
    [Google Scholar]
  9. Giovannoni S. J., Rappé M. S. 2000; Evolution, diversity and molecular ecology of marine prokaryotes. In Microbial Ecology of the Ocean pp  47–84 Edited by Kirchman D. L. New York: Wiley;
    [Google Scholar]
  10. Gordon R. E., Haynes W. C., Pang C. H. 1973; The genus Bacillus . Agricultural Handbook 427: Washington, DC: US Department of Agriculture;
    [Google Scholar]
  11. Honda G., Tabata M., Tsuda M. 1979; The antimicrobial specificity of tryptanthrin. Planta Med 37:172–174 [CrossRef]
    [Google Scholar]
  12. Huß V. A. R., Festl H., Schleifer K.-H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  13. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro N. New York: Academic Press;
    [Google Scholar]
  15. Kampen I. 2001; Studien zu Wachstum und Metabolitenbildung bei neuen Bakterien aus der Nordsee . Diploma thesis Technical University of Braunschweig;
  16. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998 Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake Int J Syst Bacteriol 48:1363–1372 [CrossRef]
    [Google Scholar]
  17. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Schumann P., Hirsch P. 1999; Roseovarius tolerans gen. nov., sp. nov. a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147 [CrossRef]
    [Google Scholar]
  18. Labrenz M., Tindall B. J., Lawson P. A., Collins M. D., Schumann P., Hirsch P. 2000; Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., α -3- Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int J Syst Evol Microbiol 50:303–313 [CrossRef]
    [Google Scholar]
  19. Lane D. J. 1991; 16S–23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  125–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  20. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  21. Ludwig W., Strunk O., Klugbauer S. 9 other authors 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  22. Lurtz V., Nguyen S., El-Ghezal A., Wagner-Döbler I., Laatsch H., Lang S. 2002; Bioreactor cultivations of metabolically variable North Sea bacteria. Poster presentation, 3rd European Conference on Marine Natural Products 15–20 September 2002 Elmau Castle, Germany:
    [Google Scholar]
  23. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  25. Milne P. J., Hunt A. L., Rostoll K., van der Walt J. J., Graz C. J. 1998; The biological activity of selected cyclic dipeptides. J Pharm Pharmacol 50:1331–1337 [CrossRef]
    [Google Scholar]
  26. Pukall R., Brambilla E., Stackebrandt E. 1998; Automated fragment length analysis of fluorescently-labeled 16S rDNA after digestion with 4-base cutting restriction enzymes. J Microbiol Methods 32:55–64 [CrossRef]
    [Google Scholar]
  27. Pukall R., Buntefuß D., Frühling A., Rohde M., Kroppenstedt R. M., Burghardt J., Lebaron P., Bernard L, Stackebrandt E. 1999; Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the α - Proteobacteria . Int J Syst Bacteriol 49:513–519 [CrossRef]
    [Google Scholar]
  28. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  29. Rappé M. S., Vergin K., Giovannoni S. J. 2000; Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems. FEMS Microbiol Ecol 33:219–232 [CrossRef]
    [Google Scholar]
  30. Rheims H., Frühling A., Schumann P., Rohde M., Stackebrandt E. 1999; Bacillus silvestris sp. nov., a new member of the genus Bacillus that contains lysine in its cell wall. Int J Syst Bacteriol 49:795–802 [CrossRef]
    [Google Scholar]
  31. Schröder D. 2002; Untersuchungen zum Sekundärmetabolismus arktischer und antarktischer Meereisbakterien . PhD thesis University of Göttingen;
  32. Sorokin D. Y. 1995; Sulfitobacter pontiacus gen. nov., sp. nov. a new heterotrophic bacterium from the Black Sea, specialised on sulfite oxidation. Microbiology (English translation of Mikrobiologiya) 64295–305
    [Google Scholar]
  33. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The anaerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271 [CrossRef]
    [Google Scholar]
  34. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  35. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  36. Tindall B. J. 1994; Chemical analysis of Archaea and Bacteria: a critical evaluation of its use in taxonomy and identification. In Bacterial Diversity and Systematics (FEMS Symposium no 75) pp  243–258 Edited by Priest F. G., Ramos-Cormenzana A., Tindall B. J. New York: Plenum;
    [Google Scholar]
  37. Vasquez M., Gruttner C., Gallacher S., Moore E. R. B. 2001; Detection and characterization of toxigenic bacteria associated with Alexandrium catenella and Aulacomya ater contaminated with PSP. J Shellfish Res 20:1245–1249
    [Google Scholar]
  38. Vasquez M., Grüttner C., Möeller B., Moore E. R. B. 2002; Limited selection of sodium channel blocking toxin-producing bacteria from paralytic shellfish toxin-contaminated mussels ( Aulacomya ater ). Res Microbiol 153:333–338 [CrossRef]
    [Google Scholar]
  39. Wagner-Döbler I., Rheims H., Felske A., Pukall R., Tindall B. J. 2003; Jannaschia helgolandensis gen. nov., sp. nov., a novel abundant member of the marine Roseobacter clade from the North Sea. Int J Syst Evol Microbiol 53:731–738 [CrossRef]
    [Google Scholar]
  40. Yurkov V. V., Beatty J. T. 1998a; Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724
    [Google Scholar]
  41. Yurkov V., Beatty J. T. 1998b; Isolation of aerobic anoxygenic photosynthetic bacteria from black smoker plume waters of the Juan de Fuca Ridge in the Pacific Ocean. Appl Environ Microbiol 64:337–341
    [Google Scholar]
  42. Zubkov M. V., Fuchs B. M., Archer S. D., Kiene R. P., Amann R., Burkill P. H. 2001; Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ Microbiol 3:304–311 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02850-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02850-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error