1887

Abstract

A moderately thermophilic and alkaliphilic bacillus, which had been reported and designated BLx ( Haruta ., 2002 ), was isolated from a semi-continuous decomposing system of kitchen refuse. Cells of strain BLx were strictly aerobic, rod-shaped, motile and spore forming. The optimum temperature and pH for growth were approximately 50 °C and pH 8–9. Strain BLx was able to grow at NaCl concentrations from 0·5 to 7·5 %, with optimum growth at 0·5 % NaCl. The predominant menaquinone was MK-7, and the major fatty acid was iso-C. Phylogenetic analysis showed that strain BLx was positioned in an independent lineage within the cluster that includes the genera and in rRNA group 1. Strain BLx exhibited 16S rDNA similarity of 92·8–94·8 % to species and 92·3 % to . Phenotypic, chemotaxonomic and phylogenetic analyses supported the classification of strain BLx in a novel genus and species. gen. nov., sp. nov. is proposed on the basis of phenotypic, chemotaxonomic and phylogenetic data. The type strain is BLx (DSM 15825=IAM15044=KCTC 3815).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02883-0
2004-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/4/ijs541063.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02883-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Márquez M. C., Volcani B. E., Schleifer K. H., Ventosa A. 1999; Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea. Int J Syst Bacteriol 49:521–530 [CrossRef]
    [Google Scholar]
  2. Arahal D. R., Márquez M. C., Volcani B. E., Schleifer K. H., Ventosa A. 2000; Reclassification of Bacillus marismortui as Salibacillus marismortui comb. nov. Int J Syst Evol Microbiol 50:1501–1503 [CrossRef]
    [Google Scholar]
  3. Beffa T., Blanc M., Lyon P. F., Vogt G., Marchiani M., Fischer J. L., Aragno M. 1996; Isolation of Thermus strains from hot composts (60 to 80 degrees C). Appl Environ Microbiol 62:1723–1727
    [Google Scholar]
  4. Collins M. D., Jones D. 1982; A note on the separation of natural mixtures of bacterial menaquinones using reverse phase high performance liquid chromatography. J Appl Bacteriol 52:457–460 [CrossRef]
    [Google Scholar]
  5. Dees P. M., Ghiorse W. C. 2001; Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol Ecol 35:207–216 [CrossRef]
    [Google Scholar]
  6. Devereux R., Willis S. G. 1995; Amplification of ribosomal RNA sequences. In Molecular Microbial Ecology Manual vol. 3.3.1 pp  1–11 Edited by Akkermans A. D. L, van Elsas J. D., de Bruijn F. J. London: Kluwer Academic Publishers;
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Finstein M. S., Morris M. L. 1975; Microbiology of municipal solid waste composting. Adv Appl Microbiol 19:113–151
    [Google Scholar]
  9. Fujio Y., Kume S. 1991; Isolation and identification of thermophilic bacteria from sewage sludge compost. J Ferment Bioeng 72:334–337 [CrossRef]
    [Google Scholar]
  10. Garabito M. J., Arahal D. R., Mellado E., Márquez M. C., Ventosa A. 1997; Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int J Syst Bacteriol 47:735–741 [CrossRef]
    [Google Scholar]
  11. Haruta S., Kondo M., Nakamura K., Aiba H., Ueno S., Ishii M., Igarashi Y. 2002; Microbial community changes during organic solid waste treatment analyzed by double gradient-denaturing gradient gel electrophoresis and fluorescence in situ hybridization. Appl Microbiol Biotechnol 60:224–231 [CrossRef]
    [Google Scholar]
  12. Heyndrickx M., Lebbe L., Kersters K., Hoste B., De Wachter R., De Vos P., Forsyth G., Logan N. A. 1999; Proposal of Virgibacillus proomii sp. nov. and emended description of Virgibacillus pantothenticus (Proom and Knight 1950) Heyndrickx et al . 1998. Int J Syst Bacteriol 49:1083–1090 [CrossRef]
    [Google Scholar]
  13. Heyrman J., Logan N. A., Busse H. J., Balcaen A., Lebbe L., Rodriguez-Diaz M., Swings J., De Vos P. 2003; Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus , as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb. nov., and emended description of the genus Virgibacillus . Int J Syst Evol Microbiol 53:501–511 [CrossRef]
    [Google Scholar]
  14. Ishii K., Fukui M., Takii S. 2000; Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J Appl Microbiol 89:768–777 [CrossRef]
    [Google Scholar]
  15. Ishikawa M., Ishizaki S., Yamamoto Y., Yamasato K. 2002; Paraliobacillus ryukyuensis gen. nov., sp. nov., a new Gram-positive, slightly halophilic, extremely halotolerant, facultative anaerobe isolated from a decomposing marine alga. J Gen Appl Microbiol 48:269–279 [CrossRef]
    [Google Scholar]
  16. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  17. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  18. Kurisu F., Satoh H., Mino T., Matsuo T. 2002; Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method. Water Res 36:429–438 [CrossRef]
    [Google Scholar]
  19. LaMontagne M. G., Michel F. C., Holden P. A. Jr, Reddy C. A. 2002; Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. J Microbiol Methods 49:255–264 [CrossRef]
    [Google Scholar]
  20. Lawson P. A., Deutch C. E., Collins M. D. 1996; Phylogenetic characterization of a novel salt-tolerant Bacillus species: description of Bacillus disposauri sp. nov. J Appl Bacteriol 81:109–112 [CrossRef]
    [Google Scholar]
  21. Nakasaki K., Shoda M., Kubota H. 1985; Effect of temperature on composting of sewage sludge. Appl Environ Microbiol 50:1526–1530
    [Google Scholar]
  22. Pedro M. S., Haruta S., Nakamura K., Hazaka M., Ishii M., Igarashi Y. 2003; Isolation and characterization of predominant microorganisms during decomposition of waste materials in a field-scale composter. J Biosci Bioeng 95:368–373 [CrossRef]
    [Google Scholar]
  23. Peters S., Koschinsky S., Schwieger F., Tebbe C. C. 2000; Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol 66:930–936 [CrossRef]
    [Google Scholar]
  24. Proom H., Knight B. C. J. G. 1950; Bacillus pantothenticus (n. sp.). J Gen Microbiol 4:539–541 [CrossRef]
    [Google Scholar]
  25. Ryckeboer J., Mergaert J., Coosemans J., Deprins K., Swings J. 2003; Microbiological aspects of biowaste during composting in a monitored compost bin. J Appl Microbiol 94:127–137 [CrossRef]
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  27. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of mulein. Methods Microbiol 18:123–156
    [Google Scholar]
  28. Spring S., Ludwig W., Marquez M. C., Ventosa A., Schleifer K. H. 1996; Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov., and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496 [CrossRef]
    [Google Scholar]
  29. Strom P. F. 1985a; Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl Environ Microbiol 50:899–905
    [Google Scholar]
  30. Strom P. F. 1985b; Identification of thermophilic bacteria in solid-waste composting. Appl Environ Microbiol 50:906–913
    [Google Scholar]
  31. Tamaoka J., Komagata K. 1984; Determination of DNA-base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  33. Wainø M., Tindall B. J., Schumann P., Ingvorsen K. 1999; Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49:821–831 [CrossRef]
    [Google Scholar]
  34. Watanabe K., Kodama Y., Harayama S. 2001; Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods 44:253–262 [CrossRef]
    [Google Scholar]
  35. Yoon J. H., Kang K. H., Park Y. H. 2002; Lentibacillus salicampi gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt field in Korea. Int J Syst Evol Microbiol 52:2043–2048 [CrossRef]
    [Google Scholar]
  36. Zhu H., Qu F., Zhu L. H. 1993; Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res 21:5279–5280 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02883-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02883-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error