1887

Abstract

Three strains from different habitats were compared by phenotypic, chemotaxonomic and molecular characteristics. All strains form coccoid cells and have been reported to grow as square tablets of eight to 64 cells. However, two of these strains (ATCC 11041 and ATCC 43383) have apparently lost this ability, and the third strain may temporarily lose this capacity under certain cultivation conditions. The three strains showed only minor differences in metabolic characteristics: the main significant physiological difference was the ability to accumulate polyphosphate under alternating anaerobic–aerobic conditions found for DSM 15336. The three strains showed high similarity in fatty acid composition and only slight differences in the G+C content (63–67 mol%) and DNA–DNA reassociation (90–95 % relatedness). Comparative 16S rRNA gene sequence analyses on these three strains and three 16S rRNA gene sequences deposited at NCBI showed that they are all very similar (>98·8 %) and that they form a distinct group among the ‘’, showing between 94·6 and 93 % 16S rRNA gene similarity to members of various genera such as , , , , and . Fluorescent hybridization with oligonucleotide probes targeting betaproteobacteria on the 16S rRNA and 23S rRNA gene level further supported the conclusion that all investigated strains are members of the ‘’. Two oligonucleotide probes were designed and successfully applied for culture-independent identification of by means of fluorescent hybridization.

Keyword(s): GTA, green top agar
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02885-0
2004-09-01
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541709.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02885-0&mimeType=html&fmt=ahah

References

  1. Amann R. 1995; In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual pp. 3.3.6.1–3.3.6.15 Edited by Akkermanns A. D. L., van Elsas J. D., de Brujin F. J. Dordrecht: Kluwer Academic;
    [Google Scholar]
  2. Amann R., Snaidr J., Wagner M., Ludwig W., Schleifer K.-H. 1996; In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol 178:3496–3500
    [Google Scholar]
  3. Austin J. W., Murray R. G. E. 1990; Isolation and in vitro assembly of the components of the outer S layer of Lampropedia hyalina . J Bacteriol 172:3681–3689
    [Google Scholar]
  4. Gerhardt R., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Hungate R. E. 1966 The Rumen and its Microbes New York: Academic Press;
    [Google Scholar]
  6. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel oil contaminated site including numerical identification of heterotroph water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  7. Kämpfer P., Bark K., Busse H.-J., Auling G., Dott W. 1992; Numerical and chemotaxonomy of polyphosphate accumulating Acinetobacter strains with high polyphosphate: AMP phosphotransferase (PPAT) activity. Syst Appl Microbiol 15:409–419 [CrossRef]
    [Google Scholar]
  8. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J. 2003; Chryseobacterium defluvii sp. nov, isolated from wastewater. Int J Syst Evol Microbiol 53:93–97 [CrossRef]
    [Google Scholar]
  9. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  10. Lany S. G. 1972; Morphological studies of cell envelope differences among colony variants of Lampropedia hyalina . MSc thesis University of Western Ontario; London, Ontario, Canada:
  11. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K. H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  12. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  13. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H. 1992; Phylogenetic oligonucleotide probes for the major subclasses of Proteobacteria : problems and solutions. Syst Appl Microbiol 15:593–600 [CrossRef]
    [Google Scholar]
  14. Murray R. G. E. 1963; Role of superficial structures in the characteristic morphology of Lampropedia hyalina . Can J Microbiol 9:593–600 [CrossRef]
    [Google Scholar]
  15. Murray R. G. E. 1984; Genus Lampropedia Schroeter 1886, 151AL . In Bergey's Manual of Systematic Bacteriology vol. 1 pp  402–406 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  16. Palinska K. A., Liesack W., Rhiel E., Krumbein W. E. 1996; Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia -like isolates. Arch Microbiol 166:224–233 [CrossRef]
    [Google Scholar]
  17. Pfennig N. 1989; Genus IX. Thiopedia Winogradsky 1888, 85AL . In Bergey's Manual of Systematic Bacteriology vol 3 pp  1652–1653 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  18. Pringsheim E. G. 1966; Lampropedia hyalina Schroeter, eine apochlorotische Merismopedia (Cyanophyceae). Arch Mikrobiol 55:200–208 (in German [CrossRef]
    [Google Scholar]
  19. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of Bacteria from potable water. Appl Environ Microbiol 49:1–7
    [Google Scholar]
  20. Schroeter J. 1886 In Kryptogamenflora von Schlesien , Bd 3, Heft 3, Pilze Edited by Cohn F. Breslau: J. U. Kern's Verlag;
    [Google Scholar]
  21. Spring S., Jäckel U., Wagner M., Kämpfer P. 2004; Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov.. Int J Syst Evol Microbiol 54:99–106 [CrossRef]
    [Google Scholar]
  22. Stackebrandt E., Frederiksen W., Garrity G. M. 10 other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  23. Stante L., Cellamare C. M., Malaspina F., Bortone G., Tilche A. 1996; Production of poly-beta hydroxybutyrate by Lampropedia sp. isolated from activated sludge for phosphorus removal. Med Fac Landbouww Univ Gent 61:4b2101–2108
    [Google Scholar]
  24. Stante L., Cellamare C. M., Malaspina F., Bortone G., Tilche A. 1997; Biological phosphorus removal by pure culture of Lampropedia spp. Water Res 31:1317–1324 [CrossRef]
    [Google Scholar]
  25. Steidle A., Allesen-Holm M., Riedel K., Berg G., Givskov M., Molin S., Eberl L. 2002; Identification and characterization of an N -acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl Environ Microbiol 68:6371 [CrossRef]
    [Google Scholar]
  26. Wen A., Fegan M., Hayward C., Chakraborty S., Sly L. I. 1999; Phylogenetic relationships among members of the Comamonadaceae , and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al . 1987). gen. nov., comb. nov. Int J Syst Bacteriol 49:567–576 [CrossRef]
    [Google Scholar]
  27. Xie C. H., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA sequence. J Gen Appl Microbiol 49:345–349 [CrossRef]
    [Google Scholar]
  28. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02885-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02885-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error