1887

Abstract

A novel extremely thermophilic, methane-producing archaeon was isolated from a black smoker chimney at the Kairei field in the Central Indian Ridge. Cells of this isolate were irregular cocci with several flagella; motility was not observed. Growth was observed between 55 and 83 °C (optimum of 75 °C; 30 min doubling time) and between pH 6·0 and 8·5 (optimum of pH 6·7). The isolate was a strictly anaerobic, methanogenic autotroph capable of using hydrogen and carbon dioxide as sole energy and carbon sources. Formate was utilized as an alternative energy source. The G+C content of the genomic DNA was 33·3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate was most closely related to strain Kol 5. The isolate, however, could be genetically differentiated from this species by DNA–DNA hybridization analysis and on the basis of its physiological properties. The name sp. nov. is proposed for this isolate; the type strain is Mc-S-70 (=JCM 11930=ATCC BAA-687).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02887-0
2004-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/4/ijs541095.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02887-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F. F. 1998; GenBank. Nucleic Acids Res 26:1–7 [CrossRef]
    [Google Scholar]
  3. Boone D. R., Whitman W. B. 1988; Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38:212–219 [CrossRef]
    [Google Scholar]
  4. Burggraf S., Fricke H., Neuner A., Kristjansson J. K., Rouvier P., Mandelco L., Woese C. R., Stetter K. O. 1990; Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol 13:263–269 [CrossRef]
    [Google Scholar]
  5. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  6. DeLong E. F., King L. L., Massana R., Cittone H., Murray A., Schleper C., Wakeham G. 1998; Dibiphytanyl ether lipids in nonthermophilic crenarchaeotes. Appl Environ Microbiol 64:1133–1138
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Hashimoto J., Ohta S., Gamo T. 7 other authors 2001; First hydrothermal vent communities from the Indian Ocean discovered. Zool Sci 18:717–721 [CrossRef]
    [Google Scholar]
  9. Huber H., Thomm M., König H., Thies G., Stetter K. O. 1982; Methanococcus thermolithotrophicus , a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50 [CrossRef]
    [Google Scholar]
  10. Jeanthon C., L'Haridon S., Reysenbach A. L., Vernet M., Messner P., Sleytr U. B., Prieur D. 1998; Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:913–919 [CrossRef]
    [Google Scholar]
  11. Jeanthon C., L'Haridon S., Reysenbach A.-L., Corre E., Vernet M., Messner P., Sleytr U. B., Prieur D. 1999a; Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int J Syst Bacteriol 49:583–589 [CrossRef]
    [Google Scholar]
  12. Jeanthon C., L'Haridon S., Pradel N., Prieur D. 1999b; Rapid identification of hyperthermophilic methanococci isolated from deep-sea hydrothermal vents. Int J Syst Bacteriol 49:591–594 [CrossRef]
    [Google Scholar]
  13. Jones W. J., Paynter M. J. B., Gupta R. 1983a; Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91–97 [CrossRef]
    [Google Scholar]
  14. Jones W. J., Leigh J. A., Mayer F., Woese C. R., Wolfe R. S. 1983b; Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261 [CrossRef]
    [Google Scholar]
  15. Jones W. J., Stugard C. E., Jannasch H. W. 1989; Comparison of thermophilic methanogens from submarine hydrothermal vents. Arch Microbiol 151:314–318 [CrossRef]
    [Google Scholar]
  16. Keswani J., Orkand S., Premachandran U., Mandelco L., Franklin M. J., Whitman W. B. 1996; Phylogeny and taxonomy of mesophilic Methanococcus spp. and comparison of rRNA, DNA hybridization, and phenotypic methods. Int J Syst Bacteriol 46:727–735 [CrossRef]
    [Google Scholar]
  17. Koga Y., Akagawa-Matsushita M., Ohga M., Nishihara M. 1993; Taxonomic significance of the distribution of component parts of polar ether lipids in methanogens. Syst Appl Microbiol 16:342–351 [CrossRef]
    [Google Scholar]
  18. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: John Wiley;
    [Google Scholar]
  19. L'Haridon S., Reysenbach A.-L., Banta A., Messner P., Schumann P., Stackebrandt E., Jeanthon C. 2003; Methanocaldococcus indicus sp. nov., a novel hyperthermophilic methanogen isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 53:1931–1935 [CrossRef]
    [Google Scholar]
  20. Maidak B. L., Cole J. R., Lilburn T. G. 9 other authors 2000; The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28:173–174 [CrossRef]
    [Google Scholar]
  21. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 4:109–118
    [Google Scholar]
  22. Nishihara M., Koga Y. 1987; Extraction and composition of polar lipids from the archaebacterium, Methanobacterium thermoautotrophicum : effective extraction of tetraether lipids by an acidified solvent. J Biochem Tokyo 101:997–1005
    [Google Scholar]
  23. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  24. Stetter K. O. 1996; Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158 [CrossRef]
    [Google Scholar]
  25. Takai K., Horikoshi K. 2000; Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17 [CrossRef]
    [Google Scholar]
  26. Takai K., Inoue A., Horikoshi K. 1999; Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11 000 m deep Mariana Trench. Int J Syst Bacteriol 49:619–628 [CrossRef]
    [Google Scholar]
  27. Takai K., Sugai A., Itoh T., Horikoshi K. 2000; Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500 [CrossRef]
    [Google Scholar]
  28. Takai K., Komatsu T., Inagaki F., Horikoshi K. 2001; Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629 [CrossRef]
    [Google Scholar]
  29. Takai K., Inoue A., Horikoshi K. 2002; Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52:1089–1095 [CrossRef]
    [Google Scholar]
  30. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  31. Whitman W. B., Boone D. R., Koga Y. 2001; Order Methanococcales . In Bergey's Manual of Systematic Bacteriology . , 2nd edn. vol 1 pp  236–246 Edited by Boone D. R., Castenholz R. W., Garrity G. Berlin/Heidelberg, Germany: Springer;
  32. Wiegel J. 2002; Thermophiles: anaerobic alkalithermophiles. In Encyclopedia of Environmental Microbiology pp  3127–3140 Edited by Bitton G. New York: Wiley;
    [Google Scholar]
  33. Zhao H., Wood A. G., Widdel F., Bryant M. P. 1988; An extremely thermophilic Methanococcus from a deep-sea hydrothermal vent and its plasmid. Arch Microbiol 150:178–183 [CrossRef]
    [Google Scholar]
  34. Zillig W., Holz I., Janekovic D. 7 other authors 1990; Hyperthermus butylicus , a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02887-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02887-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error