1887

Abstract

A yellow-pigmented, hexachlorocyclohexane (HCH)-degrading bacterium, designated F2, was isolated from an HCH dumpsite at Ummari village in Lucknow, India. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belonged to the genus . Its closest neighbour was UT26 (99.2 % 16S rRNA gene sequence similarity). The DNA G+C content was 65.7 mol%. The polyamine profile showed the presence of spermidine. The respiratory pigment was ubiquinone Q-10. The predominant cellular fatty acids were C (12.5 %), C 2-OH (8.1 %), summed feature 3 (consisting of Cω7 and/or Cω6; 5.8 %) and summed feature 8 (consisting of Cω7 and/or Cω6; 53.1 %). The major polar lipids of strain F2 were phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and sphingoglycolipid. DNA–DNA relatedness and biochemical and physiological characters clearly distinguished the isolate from its closest phylogenetic neighbours Thus, strain F2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is strain F2 ( = MTCC 9456  = CCM 7544).

Funding
This study was supported by the:
  • Department of Biotechnology, Government of India
  • National Bureau of Agriculturally Important Micro-organisms
  • Council of Scientific and Industrial Research
  • Department of Biotechnology
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028886-0
2012-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/3/618.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028886-0&mimeType=html&fmt=ahah

References

  1. Arden-Jones M. P., McCarthy A. J., Cross T. 1979; Taxonomic and serologic studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. J Gen Microbiol 115:343–354[PubMed] [CrossRef]
    [Google Scholar]
  2. Bala K., Sharma P., Lal R. 2010; Sphingobium quisquiliarum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH-contaminated soil. Int J Syst Evol Microbiol 60:429–433 [View Article][PubMed]
    [Google Scholar]
  3. Basta T., Buerger S., Stolz A. 2005; Structural and replicative diversity of large plasmids from sphingomonads that degrade polycyclic aromatic compounds and xenobiotics. Microbiology 151:2025–2037 [View Article][PubMed]
    [Google Scholar]
  4. Böltner D., Moreno-Morillas S., Ramos J. L. 2005; 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ Microbiol 7:1329–1338 [View Article][PubMed]
    [Google Scholar]
  5. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  6. Busse H.-J., Kämpfer P., Denner E. B. M. 1999; Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [View Article][PubMed]
    [Google Scholar]
  7. Christensen W. B. 1946; Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466
    [Google Scholar]
  8. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2, 4-diamino butyric acid (DAB). J Appl Bacteriol 48:459–470 [View Article]
    [Google Scholar]
  9. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  10. Dadhwal M., Singh A., Prakash O., Gupta S. K., Kumari K., Sharma P., Jit S., Verma M., Holliger C., Lal R. 2009; Proposal of biostimulation for hexachlorocyclohexane (HCH)-decontamination and characterization of culturable bacterial community from high-dose point HCH-contaminated soils. J Appl Microbiol 106:381–392 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  12. Felsenstein J. 1993; phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  13. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773 [View Article][PubMed]
    [Google Scholar]
  14. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. 1974; Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63 [View Article]
    [Google Scholar]
  15. Gupta S. K., Lal D., Lal R. 2009; Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 59:156–161 [View Article][PubMed]
    [Google Scholar]
  16. Jit S., Dadhwal M., Kumari H., Jindal S., Kaur J., Lata P., Niharika N., Lal D., Garg N. other authors 2011; Evaluation of hexachlorocyclohexane contamination from the last lindane production plant operating in India. Environ Sci Pollut Res Int 18:586–597[PubMed] [CrossRef]
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  18. Kumar M., Verma M., Lal R. 2008; Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol 58:861–865 [View Article][PubMed]
    [Google Scholar]
  19. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  20. Lal R., Pandey G., Sharma P., Kumari K., Malhotra S., Pandey R., Raina V., Kohler H. P. E., Holliger C. other authors 2010; Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80 [View Article][PubMed]
    [Google Scholar]
  21. Maruyama T., Park H.-D., Ozawa K., Tanaka Y., Sumino T., Hamana K., Hiraishi A., Kato K. 2006; Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56:85–89 [View Article][PubMed]
    [Google Scholar]
  22. McCarthy A. J., Cross T. 1984; A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 130:5–25
    [Google Scholar]
  23. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  24. Prakash O., Kumari K., Lal R. 2007; Pseudomonas delhiensis sp. nov., from fly ash dumping site of thermal power plant. Int J Syst Evol Microbiol 57:527–531 [View Article][PubMed]
    [Google Scholar]
  25. Sharma P., Verma M., Bala K., Nigam A., Lal R. 2010; Sphingopyxis ummariensis sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 60:780–784 [View Article][PubMed]
    [Google Scholar]
  26. Singh A., Lal R. 2009; Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 59:162–166 [View Article][PubMed]
    [Google Scholar]
  27. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417[PubMed]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  29. Tourova T. P., Antonov A. S. 1987; Identification of microorganisms by rapid DNA–DNA hybridization. Methods Microbiol 19:333–355 [View Article]
    [Google Scholar]
  30. Vanbroekhoven K., Ryngaert A., Bastiaens L., Wattiau P., Vancanneyt M., Swings J., De Mot R., Springael D. 2004; Streptomycin as a selective agent to facilitate recovery and isolation of introduced and indigenous Sphingomonas from environmental samples. Environ Microbiol 6:1123–1136 [View Article][PubMed]
    [Google Scholar]
  31. Walker K., Vallero D. A., Lewis R. G. 1999; Factors influencing the distribution of lindane and other hexachlorocyclohexanes in the environment. Environ Sci Technol 33:4373–4378 [CrossRef]
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  33. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028886-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028886-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error