1887

Abstract

This study analysed the usefulness of gene sequences as an alternative phylogenetic and/or identification marker for vibrios. The sequences suggest that the genus is polyphyletic. The high heterogeneity observed within vibrios was congruent with former polyphasic taxonomic studies on this group. species clustered together and apparently nested within vibrios, while was apart from other vibrios. Within the vibrios, and clustered apart from the other genus members. - and -related species formed compact separated groups. On the other hand, species related to appeared scattered in the phylogenetic tree. The pairs and , and and and clustered completely apart from each other. There was a correlation of 0·58 between and 16S rDNA pairwise similarities. Strains of the same species have at least 94 % sequence similarity. gene sequences are much more discriminatory than 16S rDNA. For 16S rDNA similarity values above 98 % there was a wide range of A similarities, from 83 to 99 %.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02963-0
2004-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/3/ijs540919.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02963-0&mimeType=html&fmt=ahah

References

  1. Austin B., Austin D. A. 1999 Bacterial Fish Pathogens: Disease of Farmed and Wild Fish , 3rd edn. Berlin: Springer;
    [Google Scholar]
  2. Baumann P., Baumann L., Woolkalis M. J., Bang S. S. 1983; Evolutionary relationships in Vibrio and Photobacterium : a basis for a natural classification. Annu Rev Microbiol 37:369–398 [CrossRef]
    [Google Scholar]
  3. Ben-Haim Y., Thompson F. L., Thompson C. C., Cnockaert M. C., Hoste B., Swings J., Rosenberg E. 2003; Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis . Int J Syst Evol Microbiol 53:309–315 [CrossRef]
    [Google Scholar]
  4. Byun R., Elbourne L. D., Lan R., Reeves P. R. 1999; Evolutionary relationships of pathogenic clones of Vibrio cholerae by sequence analysis of four housekeeping genes. Infect Immun 67:1116–1124
    [Google Scholar]
  5. Cox M. M. 2003; The bacterial RecA protein as a motor protein. Annu Rev Microbiol 57:551–577 [CrossRef]
    [Google Scholar]
  6. Eisen J. A. 1995; The RecA protein as a model molecule for molecular systematics studies of bacteria: comparisons of RecA and 16S rDNA trees for the same species. J Mol Evol 41:1105–1123
    [Google Scholar]
  7. Farmer J. J., Hickman-Brenner F. W. 1992; The genera Vibrio and Photobacterium . In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, and Applications . , 2nd edn. pp  2952–3011 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. Berlin: Springer;
  8. Gomez-Gil B., Roque A., Turnbull J. F., Tron-Mayen L. 1998; Species of Vibrio isolated from hepatopancreas, haemolymph and digestive tract of a population of healthy juvenile Penaeus vannamei . Aquaculture 163:1–9 [CrossRef]
    [Google Scholar]
  9. Gomez-Gil B., Thompson F. L., Thompson C. C., Swings J. 2003a; Vibrio rotiferianus sp. nov., isolated from cultures of the rotifer Brachionus plicatilis . Int J Syst Evol Microbiol 53:239–245 [CrossRef]
    [Google Scholar]
  10. Gomez-Gil B., Thompson F. L., Thompson C. C., Swings J. 2003b; Vibrio pacinii sp. nov., from culture aquatic organisms. Int J Syst Evol Microbiol 53:1569–1573 [CrossRef]
    [Google Scholar]
  11. Hayashi K., Moriwaki J., Sawabe T., Thompson F. L., Swings J., Gudkovs N., Christen R., Ezura Y. 2003; Vibrio superstes sp. nov., isolated from the gut of Australian abalones Haliotis laevigata and Haliotis rubra . Int J Syst Evol Microbiol 53:1813–1817 [CrossRef]
    [Google Scholar]
  12. Heidelberg J. F., Heidelberg K. B., Colwell R. R. 2002a; Bacteria of the gamma-subclass Proteobacteria associated with zooplankton in Chesapeake Bay. Appl Environ Microbiol 68:5498–5507 [CrossRef]
    [Google Scholar]
  13. Heidelberg J. F., Heidelberg K. B., Colwell R. R. 2002b; Seasonality of Chesapeake Bay bacterioplankton species. Appl Environ Microbiol 68:5488–5497 [CrossRef]
    [Google Scholar]
  14. Huson D. H. 1998; Splits tree: analysing and visualising evolutionary data. Bioinformatics 14:68–73 [CrossRef]
    [Google Scholar]
  15. Jolley K. A., Feil E. J., Chan M. S., Maiden M. C. 2001; Sequence type analysis and recombinational tests (start). Bioinformatics 17:1230–1231 [CrossRef]
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. H. London: Academic Press;
    [Google Scholar]
  17. Le Roux F., Gay M., Lambert C., Waechter M., Poubalanne S., Chollet B., Nicolas J. L., Berthe F. 2002; Comparative analysis of Vibrio splendidus -related strains isolated during Crassostrea gigas mortality events. Aquat Liv Res 15:251–258 [CrossRef]
    [Google Scholar]
  18. Lloyd A. T., Sharp P. M. 1993; Evolution of the recA gene and the molecular phylogeny of bacteria. J Mol Evol 37:399–407
    [Google Scholar]
  19. Ludwig W., Klenk H. P. 2001; Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. In Bergey's Manual of Systematic Bacteriology: The Archeae and the Deeply Branching and Phototrophic Bacteria , 2nd edn. pp  49–65 Berlin: Springer;
    [Google Scholar]
  20. Macian M. C., Ludwig W., Aznar R., Grimont P. A. D., Schleifer K. H., Garay E., Pujalte M. J. 2001; Vibrio lentus sp. nov., isolated from Mediterranean oysters. Int J Syst Evol Microbiol 51:1449–1456
    [Google Scholar]
  21. Nishiguchi M. K. 2000; Temperature affects species distribution in symbiotic populations of Vibrio spp. Appl Environ Microbiol 66:3550–3555 [CrossRef]
    [Google Scholar]
  22. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  23. Roca A. I., Cox M. M. 1990; The RecA protein: structure and function. Crit Rev Biochem Mol Biol 25:415–456 [CrossRef]
    [Google Scholar]
  24. Rosenberg E., Ben-Haim Y. 2002; Microbial diseases of corals and global warming. Environ Microbiol 4:318–326 [CrossRef]
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Sawabe T., Hayashi K., Moriwaki J., Thompson F. L., Swings J., Potin P., Christen R., Ezura Y. 2004; Vibrio gallicus sp. nov., isolated from the gut of the French abalone Haliotis tuberculata . Int J Syst Evol Microbiol 54:843–846 [CrossRef]
    [Google Scholar]
  27. Stine O. C., Sozhamannan S., Gou Q., Zheng S., Morris J. G. Jr, Johnson J. A. 2000; Phylogeny of Vibrio cholerae based on recA sequence. Infect Immun 68:7180–7185 [CrossRef]
    [Google Scholar]
  28. Suantika G., Dhert P., Rombaut G., Vandenberghe J., De Wolf T., Sorgeloos P. 2001; The use of ozone in a high density recirculation system for rotifers. Aquaculture 201:35–49 [CrossRef]
    [Google Scholar]
  29. Thompson F. L., Hoste B., Vendemeulebroecke K., Swings J. 2001a; Genomic diversity amongst Vibrio isolates from different sources determined by fluorescent amplified fragment length polymorphism. Syst Appl Microbiol 24:520–538 [CrossRef]
    [Google Scholar]
  30. Thompson F. L., Hoste B., Thompson C. C., Huys G., Swings J. 2001b; The coral bleaching Vibrio shilonii Kushmaro et al . 2001 is a later synonym of Vibrio mediterranei Pujalte and Garay 1986. Syst Appl Microbiol 24:516–519 [CrossRef]
    [Google Scholar]
  31. Thompson F. L., Hoste B., Thompson C. C., Goris J., Gomez-Gil B., Huys L., De Vos P., Swings J. 2002; Enterovibrio norvegicus gen. nov., sp. nov. isolated from the gut of turbot ( Scophthalmus maximus ) larvae: a new member of the family Vibrionaceae . Int J Syst Evol Microbiol 52:2015–2022 [CrossRef]
    [Google Scholar]
  32. Thompson F. L., Hoste B., Vandemeulebroecke K., Swings J. 2003a; Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov.. Int J Syst Evol Microbiol 53:1615–1617 [CrossRef]
    [Google Scholar]
  33. Thompson F. L., Li Y., Gomez-Gil B. & 8 other authors (2003b). Vibrio neptunius sp. nov., Vibrio brasiliensis sp. nov., and Vibrio xuii sp. nov., isolated from the marine aquaculture environment (bivalves, fish, rotifers and shrimps. Int J Syst Evol Microbiol 53:245–252 [CrossRef]
    [Google Scholar]
  34. Thompson F. L., Thompson C. C., Li Y., Gomez-Gil B., Vandenberghe J., Hoste B., Swings J. 2003c; Vibrio kanaloae sp. nov., Vibrio pomeroyi sp. nov., and Vibrio chagasii sp. nov., from sea water and marine animals. Int J Syst Evol Microbiol 53:753–759 [CrossRef]
    [Google Scholar]
  35. Thompson F. L., Thompson C. C., Swings J. 2003d; Vibrio tasmaniensis sp. nov., isolated from Atlantic salmon ( Salmo salar L .). Syst Appl Microbiol 26:65–69 [CrossRef]
    [Google Scholar]
  36. Thompson F. L., Thompson C. C., Hoste B., Vandemeulebroecke K., Gullian M., Swings J. 2003e; Vibrio fortis sp. nov., and Vibrio hepatarius sp. nov., isolated from aquatic animals and the marine environment. Int J Syst Evol Microbiol 53:1495–1501 [CrossRef]
    [Google Scholar]
  37. Thompson F. L., Thompson C. C., Vicente A. C. P., Theophilo G. N. D., Hofer E., Swings J. 2003f; Genomic diversity of clinical and environmental Vibrio cholerae strains isolated in Brazil between 1991 and 2001 as revealed by FAFLP analysis. J Clin Microbiol 41:1946–1950 [CrossRef]
    [Google Scholar]
  38. Urakawa H., Yoshida T., Nishimura M., Ohwada K. 2000; Characterization of depth-related population variation in microbial communities of a coastal marine sediment using 16S rDNA-based approaches and quinone profiling. Environ Microbiol 2:542–554 [CrossRef]
    [Google Scholar]
  39. Wachsmuth I. K., Blake P. A., Olsvik O. 1994 Vibrio cholerae and Cholera. Molecular to Global Perspectives Washington, DC: American Society for Microbiology;
    [Google Scholar]
  40. WHO 2001; Cholera, 2000. Wkly Epidemiol Rec 76:233–240
    [Google Scholar]
  41. WHO 2002; Cholera, 2001. Wkly Epidemiol Rec 77:257–268
    [Google Scholar]
  42. Zeigler D. R. 2003; Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02963-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02963-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error