1887

Abstract

The relationship of isolates that were cultured from human clinical specimens in Australia to isolates from human clinical specimens in the USA and to species of the genus that are associated symbiotically with entomopathogenic nematodes was evaluated. A polyphasic approach that involved DNA–DNA hybridization, phylogenetic analyses of 16S rRNA and gene sequences and phenotypic characterization was adopted. These investigations showed that gene sequence data correlated well with DNA–DNA hybridization and phenotypic data, but that 16S rRNA gene sequence data were not suitable for defining species within the genus . Australian clinical isolates proved to be related most closely to clinical isolates from the USA, but the two groups were distinct. A novel subspecies, subsp. subsp. nov. (type strain, 9802892=CIP 108025=ACM 5210), is proposed, with the concomitant creation of subsp. subsp. nov. Analysis of sequences, coupled with previously published data on DNA–DNA hybridization and PCR-RFLP analysis of the 16S rRNA gene, indicated that there are more than the three subspecies of that have been described and confirmed the validity of the previously proposed subdivision of . Although a non-luminescent, symbiotic isolate clustered consistently with in phylogenetic analyses, DNA–DNA hybridization indicated that this isolate does not belong to the species and that there is a clear distinction between symbiotic and clinical species of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.03005-0
2004-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/4/ijs541301.html?itemId=/content/journal/ijsem/10.1099/ijs.0.03005-0&mimeType=html&fmt=ahah

References

  1. Akhurst R. J. 1980; Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis . J Gen Microbiol 121:303–309
    [Google Scholar]
  2. Akhurst R. J. 1983; Taxonomic study of Xenorhabdus , a genus of bacteria symbiotically associated with insect pathogenic nematodes. Int J Syst Bacteriol 33:38–45 [CrossRef]
    [Google Scholar]
  3. Akhurst R. J. 1987; Use of starch gel electrophoresis in the taxonomy of the genus Heterorhabditis (Nematoda: Heterorhabditidae). Nematologica 33:1–9 [CrossRef]
    [Google Scholar]
  4. Akhurst R. J., Boemare N. E. 1986; A non-luminescent strain of Xenorhabdus luminescens ( Enterobacteriaceae . J Gen Microbiol 132:1917–1922
    [Google Scholar]
  5. Akhurst R. J., Bedding R. A., Bull R. M., Smith D. R. J. 1992; An epizootic of Heterorhabditis spp.(Heterorhabditidae: Nematoda) in sugar cane scarabaeids (Coleoptera). Fundam Appl Nematol 15:71–73
    [Google Scholar]
  6. Akhurst R. J., Mourant R. G., Baud L., Boemare N. E. 1996; Phenotypic and DNA relatedness between nematode symbionts and clinical strains of the genus Photorhabdus ( Enterobacteriaceae ). Int J Syst Bacteriol 46:1034–1041 [CrossRef]
    [Google Scholar]
  7. Bedding R. A., Miller L. A. 1981; Use of a nematode, Heterorhabditis heliothidis , to control black vine weevil, Otiorhynchus sulcatus , in potted plants. Ann Appl Biol 99:211–216 [CrossRef]
    [Google Scholar]
  8. Bleakley B., Nealson K. H. 1988; Characterization of primary and secondary forms of Xenorhabdus luminescens strain Hm. FEMS Microbiol Ecol 53:241–250
    [Google Scholar]
  9. Boemare N. E., Akhurst R. J. 1988; Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae). J Gen Microbiol 134:751–761
    [Google Scholar]
  10. Boemare N. E., Akhurst R. J., Mourant R. G. 1993; DNA relatedness between Xenorhabdus spp. ( Enterobacteriaceae ), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 43:249–255 [CrossRef]
    [Google Scholar]
  11. Brunel B., Givaudan A., Lanois A., Akhurst R. J., Boemare N. 1997; Fast and accurate identification of Xenorhabdus and Photorhabdus species by restriction analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 63:574–580
    [Google Scholar]
  12. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  13. Farmer J. J. III, Jorgensen J. H., Grimont P. A. D. 8 other authors 1989; Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens. J Clin Microbiol 27:1594–1600
    [Google Scholar]
  14. Felsenstein J. 1989; phylip – Phylogeny inference package (version 3.2. Cladistics 5:164–166
    [Google Scholar]
  15. Fischer-Le Saux M., Viallard V., Brunel B., Normand P., Boemare N. E. 1999; Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P.luminescens subsp. luminescens subsp.nov., P. luminescens subsp. akhurstii subsp. nov.,P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp.nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol 49:1645–1656 [CrossRef]
    [Google Scholar]
  16. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284 [CrossRef]
    [Google Scholar]
  17. Gerrard J. G., McNevin S., Alfredson D., Forgan-Smith R., Fraser N. 2003; Photorhabdus species: bioluminescent bacteria as emerging human pathogens?. Emerg Infect Dis 9:251–254 [CrossRef]
    [Google Scholar]
  18. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  19. Kasai H., Tamura T., Harayama S. 2000; Intrageneric relationships among Micromonospora species deduced from gyrB -based phylogeny and DNA relatedness. Int J Syst Evol Microbiol 50:127–134 [CrossRef]
    [Google Scholar]
  20. Peel M. M., Alfredson D. A., Gerrard J. G., Davis J. M., Robson J. M., McDougall R. J., Scullie B. L., Akhurst R. J. 1999; Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia. J Clin Microbiol 37:3647–3653
    [Google Scholar]
  21. Poinar G. O. Jr, Thomas G. M., Hess R. 1977; Characteristics of the specific bacterium associated with Heterorhabditis bacteriophora (Heterorhabditidae: Rhabditida. Nematologica 23:97–102 [CrossRef]
    [Google Scholar]
  22. Poinar G. O. Jr, Thomas G. M., Haygood M., Nealson K. H. 1980; Growth and luminescence of the symbiotic bacteria associated with the terrestrial nematode, Heterorhabditis bacteriophora . Soil Biol Biochem 12:5–10 [CrossRef]
    [Google Scholar]
  23. Poinar G. O. Jr, Jackson T., Klein M. 1987; Heterorhabditis megidis sp. n.(Heterorhabditidae: Rhabditida), parasitic in the Japanese beetle, Popillia japonica (Scarabaeidae: Coleoptera), in Ohio. Proc Helminthol Soc Wash 54:53–59
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Smits P. H., Ehlers R.-U. 1991; Identification of Heterorhabditis spp. by morphometric characters and RFLP and of their symbiotic bacteria Xenorhabdus by species-specific DNA probes. IOBC/WPRS Bull 14:195–201
    [Google Scholar]
  27. Szállás E., Koch C., Fodor A., Burghardt J., Buss O., Szentirmai A., Nealson K. H., Stackebrandt E. 1997; Phylogenetic evidence for the taxonomic heterogeneity of Photorhabdus luminescens . Int J Syst Bacteriol 47:402–407 [CrossRef]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  29. Venkateswaran K., Moser D. P., Dollhopf M. E. 10 other authors 1999; Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49:705–724 [CrossRef]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  31. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  32. Yamamoto S., Kasai H., Arnold D. L., Jackson R. W., Vivian A., Harayama S. 2000; Phylogeny of the genus Pseudomonas : intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.03005-0
Loading
/content/journal/ijsem/10.1099/ijs.0.03005-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error