1887

Abstract

Three Gram-negative, chemoheterotrophic, non-motile, rod-shaped bacterial strains that accumulate poly--hydroxybutyrate granules were isolated from the Bermuda Atlantic Time-series Study site by high-throughput culturing methods and characterized by polyphasic approaches. DNA–DNA hybridization, DNA G+C content and phylogenetic analyses based on 16S rRNA gene sequences divided the three isolates into two distinct genospecies that were clearly differentiated by fatty acid profiles, carbon source utilization patterns, antibiotic susceptibility and biochemical characteristics. The strains utilized a wide range of substrates, including pentoses, hexoses, oligosaccharides, sugar alcohols, organic acids and amino acids. DNA G+C contents were 71·5, 70·9 and 67·3 mol% for strains HTCC2516, HTCC2523 and HTCC2597, respectively. The most dominant fatty acid was 18 : 17 in strains HTCC2516 and HTCC2523, and cyclo 19 : 0 in strain HTCC2597. The type strains HTCC2516 and HTCC2597 were clearly differentiated by the presence or absence of 12 : 0, 12 : 111, 14 : 0, 15 : 0 and methyl 18 : 1. Phylogenetic analyses indicated that the strains formed a distinct monophyletic lineage within the clade in the order ‘’ of the , and which did not associate with any of the described genera. Genotypic and phenotypic differences of the isolates from the previously described genera support the description of gen. nov., sp. nov. with the type strain HTCC2516 (=ATCC BAA-861=DSM 15982=KCTC 12143) and of sp. nov. with the type strain HTCC2597 (=ATCC BAA-863=DSM 15984=KCTC 12145).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.03015-0
2004-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/4/ijs541129.html?itemId=/content/journal/ijsem/10.1099/ijs.0.03015-0&mimeType=html&fmt=ahah

References

  1. Allgaier M., Uphoff H., Felske A., Wagner-Döbler I. 2003; Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69:5051–5059 [CrossRef]
    [Google Scholar]
  2. Buchan A., Collier L. S., Neidle E. L., Moran M. A. 2000; Key aromatic-ring-cleaving enzyme, protocatechuate 3,4-dioxygenase, in the ecologically important marine Roseobacter lineage. Appl Environ Microbiol 66:4662–4672 [CrossRef]
    [Google Scholar]
  3. Cho J.-C., Giovannoni S. J. 2003a; Croceibacter atlanticus gen. nov., sp. nov., a novel marine bacterium in the family Flavobacteriaceae . Syst Appl Microbiol 26:76–83 [CrossRef]
    [Google Scholar]
  4. Cho J.-C., Giovannoni S. J. 2003b; Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the α - Proteobacteria . Int J Syst Evol Microbiol 53:1031–1036 [CrossRef]
    [Google Scholar]
  5. Connon S. A., Giovannoni S. J. 2002; High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885 [CrossRef]
    [Google Scholar]
  6. Doronina N. V., Trotsenko Y. A., Tourova T. P. 2000; Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. Int J Syst Evol Microbiol 50:1849–1859
    [Google Scholar]
  7. Garrity G. M., Holt J. G. 2001; The road map to the manual. In Bergey's Manual of Systematic Bacteriology pp  119–166 Edited by Garrity G. M. New York: Springer;
    [Google Scholar]
  8. Giovannoni S., Rappé M. 2000; Evolution, diversity and molecular ecology of marine prokaryotes. In Microbial Ecology of the Oceans pp  47–84 Edited by Kirchman D. L. New York: Wiley;
    [Google Scholar]
  9. González J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997; Sagittula stellata gen. nov., sp. nov., a lignin-transforming bacterium from a coastal environment. Int J Syst Bacteriol 47:773–780 [CrossRef]
    [Google Scholar]
  10. González J. M., Simó R., Massana R., Covert J. S., Casamayor E. O., Pedrós-Alió C., Moran M. A. 2000; Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol 66:4237–4246 [CrossRef]
    [Google Scholar]
  11. González J. M., Covert J. S., Whitman W. B. 8 other authors 2003; Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 53:1261–1269 [CrossRef]
    [Google Scholar]
  12. Gosink J. J., Herwig R. P., Staley J. T. 1997; Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus , sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365 [CrossRef]
    [Google Scholar]
  13. Holmes A. J., Kelly D. P., Baker S. C., Thompson A. S., De Marco P., Kenna E. M., Murrell J. C. 1997; Methylosulfonomonas methylovora gen. nov., sp. nov., and Marinosulfonomonas methylotropha gen. nov., sp. nov. novel methylotrophs able to grow on methanesulfonic acid. Arch Microbiol 167:46–53 [CrossRef]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  15. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov. a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372 [CrossRef]
    [Google Scholar]
  16. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Schumann P., Hirsch P. 1999; Roseovarius tolerans gen. nov., sp. nov. a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147 [CrossRef]
    [Google Scholar]
  17. Labrenz M., Tindall B. J., Lawson P. A., Collins M. D., Schumann P., Hirsch P. 2000; Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., α -3- Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int J Syst Evol Microbiol 50:303–313 [CrossRef]
    [Google Scholar]
  18. Lafay B., Ruimy R., Rausch de Traubenberg C., Breittmayer V., Gauthier M. J., Christen R. 1995; Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of the toxin-producing dinoflagellate Prorocentrum lima . Int J Syst Bacteriol 45:290–296 [CrossRef]
    [Google Scholar]
  19. Ledyard K. M., DeLong E. F., Dacey J. W. H. 1993; Characterization of a DMSP-degrading bacterial isolate from the Sargasso Sea. Arch Microbiol 160:312–318 [CrossRef]
    [Google Scholar]
  20. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K. H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  22. Petursdottir S. K., Kristjansson J. K. 1997; Silicibacter lacuscaerulensis gen. nov. sp. nov. a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1:94–99 [CrossRef]
    [Google Scholar]
  23. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  24. Pukall R., Buntefuß D., Frühling A., Rohde M., Kroppenstedt R. M., Burghardt J, Lebaron P, Bernard L, Stackebrandt E. 1999; Sulfitobater mediterraneus sp. nov., a new sulfite-oxidizing member of the α-Proteobacteria . Int J Syst Bacteriol 49:513–519 [CrossRef]
    [Google Scholar]
  25. Rappé M. S., Vergin K., Giovannoni S. J. 2000; Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems. FEMS Microbiol Ecol 33:219–232 [CrossRef]
    [Google Scholar]
  26. Rüger H.-J., Höfle M. G. 1992; Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium metiori sp. nov.; Agrobacterium ferrugineum sp.nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int J Syst Bacteriol 42:133–143 [CrossRef]
    [Google Scholar]
  27. Schaefer J. K., Goodwin K. D., McDonald I. R., Murrell J. C., Oremland R. S. 2002; Leisingera methylohalidivorans gen. nov., sp. nov., a marine methylotroph that grows on methyl bromide. Int J Syst Evol Microbiol 52:851–859 [CrossRef]
    [Google Scholar]
  28. Shiba T. 1991; Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a . Syst Appl Microbiol 14:140–145 [CrossRef]
    [Google Scholar]
  29. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Microbiol pp  611–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Sorokin D. Y. 1995; Sulfitobacter pontiacus gen. nov., sp. nov., a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiology (English translation of Mikrobiologiya) 64295–305
    [Google Scholar]
  31. Stackebrandt E., Göbel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  32. Stackebrandt E., Liesack W. 1993; Nucleic acids and classification. In Handbook of New Bacterial Systematics Edited by Goodfellow M., O'Donnell A. G. London: Academic Press;
    [Google Scholar]
  33. Suzuki T., Muroga Y., Takahama M., Nishimura Y. 1999; Roseivivax halodurans gen. nov., sp. nov. and Roseivivax halotolerans sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. Int J Syst Bacteriol 49:629–634 [CrossRef]
    [Google Scholar]
  34. Swofford D. 2002 PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  35. Uchino Y., Hirata A., Yokota A., Sugiyama J. 1998; Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen.nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov.,Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44:201–210 [CrossRef]
    [Google Scholar]
  36. Urbance J. W., Bratina B. J., Stoddard S. F., Schmidt T. M. 2001; Taxonomic characterization of Ketogulonigenium vulgare gen.nov., sp. nov. and Ketogulonigenium robustum sp. nov., which oxidize l-sorbose to 2-keto-l-gulonic acid. Int J Syst Evol Microbiol 51:1059–1070 [CrossRef]
    [Google Scholar]
  37. Wagner-Döbler I., Rheims H., Felske A., Pukall R., Tindall B. J. 2003; Jannaschia helgolandensis gen. nov., sp. nov., a novel abundant member of the marine Roseobacter clade from the North Sea. Int J Syst Evol Microbiol 53:731–738 [CrossRef]
    [Google Scholar]
  38. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  39. Zengler K., Toledo G., Rappé M. S., Elkins J., Mathur E. J., Short J. M., Keller M. 2002; Cultivating the uncultured. Proc Natl Acad Sci U S A 99:15681–15686 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.03015-0
Loading
/content/journal/ijsem/10.1099/ijs.0.03015-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error