1887

Abstract

Strain DS-1 is a small (0·8 μm in length and 0·2 μm in diameter) heterotrophic bacterium able to -oxygenate the commercial surfactant linear alkylbenzenesulfonate (LAS) and shorten the side chain by -oxidation to yield sulfophenylcarboxylates. The morphotype is widespread in cultures able to utilize LAS, and a second organism with similar characteristics, strain AN-8, is now available. Utilization of LAS is concomitant with formation of a biofilm, and cells were non-motile. Many surfactants were utilized. The organisms also grew with acetate or octane, but required no biofilm and were motile. Analysis of the gene encoding 16S rRNA placed the organisms in the -subclass of the with a sequence divergence of >8 % from any species whose name has been validly published. 16S rRNA gene sequence comparison with entries in the GenBank database showed 98 % similarity to an -protobacterial marine isolate, JP57: strain JP57 displayed the same morphotype as strain DS-1, but it was unable to utilize surfactants or any single source of carbon tested. The lipid components of strains DS-1 and JP57 were virtually identical. The fatty acids contained ester- and putative amide-linked hydroxy fatty acids, in a combination that is currently unique in the -. The major respiratory quinone present in both strains was Q. The polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and two unidentified aminolipids. Data on the 16S rRNA gene sequence and the lipid composition indicated that strains DS-1 and JP57 should be placed in a new genus, for which the name is proposed. The differences between these strains, supported by DNA hybridizations, lead to the conclusion that strain DS-1 (=DSM 13023=NCIMB 13966) is the type strain of a species in the genus , for which the name gen. nov., sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.03020-0
2004-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541489.html?itemId=/content/journal/ijsem/10.1099/ijs.0.03020-0&mimeType=html&fmt=ahah

References

  1. Chang Y. J., Stephen J. R., Richter A. P. 7 other authors 2000; Phylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation: effect of profiling method. J Microbiol Methods 40:19–31 [CrossRef]
    [Google Scholar]
  2. Collins M. D., Gilbart J. 1983; New members of the coenzyme Q series from the Legionellaceae . FEMS Microbiol Lett 16:251–255 [CrossRef]
    [Google Scholar]
  3. Denger K., Stackebrandt E., Cook A. M. 1999; Desulfonispora thiosulfatigenes gen. nov., sp. nov., a widespread, taurine-fermenting, thiosulfate-producing, anaerobic bacterium. Int J Syst Bacteriol 49:1599–1603 [CrossRef]
    [Google Scholar]
  4. De Soete G. 1983; On the construction of “optimal” phylogenetic trees. Z Naturforsch [C] 38:156–158
    [Google Scholar]
  5. Dong W., Eichhorn P., Radajewski S., Schleheck D., Denger K., Knepper T. P., Murrell J. C., Cook A. M. 2004; Parvibaculum lavamentivorans converts linear alkylbenzenesulfonate (LAS) surfactant to sulfophenylcarboxylates, α , β -unsaturated sulfophenylcarboxylates and sulfophenyldicarboxylates, which are degraded in communities. J Appl Microbiol 96:630–640 [CrossRef]
    [Google Scholar]
  6. Eichhorn P., Knepper T. P. 2002; α , β -Unsaturated sulfophenylcarboxylate intermediates detected during aerobic degradation of linear alkylbenzenesulfonate (LAS) surfactant: direct evidence for ω -oxygenation followed by β -oxidations by liquid chromatography-mass spectrometry. Environ Toxicol Chem 21:1–8
    [Google Scholar]
  7. Eilers H., Pernthaler J., Peplies J., Glöckner F. O., Gerdts G., Amann R. 2001; Isolation of novel pelagic bacteria from the German Bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67:5134–5142 [CrossRef]
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  10. Hrsák D., Begonja A. 1998; Growth characteristics and metabolic activities of the methanotrophic-heterotrophic groundwater community. J Appl Microbiol 85:448–456 [CrossRef]
    [Google Scholar]
  11. Kanz C., Nölke M., Fleischmann T., Kohler H.-P. E., Giger W. 1998; Separation of chiral biodegradation intermediates of linear alkylbenzenesulfonates by capillary electrophoresis. Anal Chem 70:913–917 [CrossRef]
    [Google Scholar]
  12. Kennedy S. I. T., Fewson C. A. 1968; Enzymes of the mandelate pathway in bacterium N.C.I.B. 8250. Biochem J 107:497–506
    [Google Scholar]
  13. Knepper T. P., Berna J. L. 2003; Surfactants: properties, production, and environmental aspects. In Analysis and Fate of Surfactants in the Aquatic Environment pp  1–50 Edited by Knepper T. P., Barceló D, de Voogt P. Amsterdam: Elsevier;
    [Google Scholar]
  14. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov. a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372 [CrossRef]
    [Google Scholar]
  15. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The ribosomal database project (RDP). Nucleic Acids Res 24:82–85 [CrossRef]
    [Google Scholar]
  16. Nichols P. D., Guckert J. B., White D. C. 1986; Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Methods 5:49–55 [CrossRef]
    [Google Scholar]
  17. OECD 1992 Guidelines for Testing Chemicals Paris: Organization for Economic Cooperation and Development;
    [Google Scholar]
  18. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  19. Sawyer C. N., Ryckman D. W. 1957; Anionic synthetic detergents and water supply problems. J Am Water Works Assoc 49:480–490
    [Google Scholar]
  20. Schleheck D., Dong W., Denger K., Heinzle E., Cook A. M. 2000; An α -proteobacterium converts linear alkylbenzenesulfonate (LAS) surfactants into sulfophenylcarboxylates, and linear alkyldiphenyletherdisulfonate surfactants into sulfodiphenylethercarboxylates. Appl Environ Microbiol 66:1911–1916 [CrossRef]
    [Google Scholar]
  21. Schleheck D., Lechner M., Schönenberger R., Suter M. J.-F., Cook A. M. 2003; Desulfonation and degradation of sulfodiphenylethercarboxylates from linear alkyldiphenyletherdisulfonate surfactants. Appl Environ Microbiol 69:938–944 [CrossRef]
    [Google Scholar]
  22. Schleheck D., Knepper T. P., Fischer K., Cook A. M. 2004; Mineralization of individual congeners of linear alkylbenzenesulfonate (LAS) by defined pairs of heterotrophic bacteria. Appl Environ Microbiol 70:4053–4063 [CrossRef]
    [Google Scholar]
  23. Schulz S., Dong W., Groth U., Cook A. M. 2000; Enantiomeric degradation of 2-(4-sulfophenyl)butyrate via 4-sulfocatechol in Delftia acidovorans SPB1. Appl Environ Microbiol 66:1905–1910 [CrossRef]
    [Google Scholar]
  24. Sittig M., Hirsch P. 1992; Chemotaxonomic investigation of budding and/or hyphal bacteria. Syst Appl Microbiol 15:209–222 [CrossRef]
    [Google Scholar]
  25. Sörbo B. 1987; Sulfate: turbidimetric and nephelometric methods. Methods Enzymol 143:3–6
    [Google Scholar]
  26. Strömpl C., Tindall B. J., Jarvis G. N., Lünsdorf H., Moore E. R. B., Hippe H. 1999; A re-evaluation of the taxonomy of the genus Anaerovibrio , with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen.nov., comb. nov., and Anaerovibrioburkinabensis as Anaeroarcus burkinensis gen. nov., comb. nov. Int J Syst Bacteriol 49:1861–1872 [CrossRef]
    [Google Scholar]
  27. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  28. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  29. Urakami T., Komagata K. 1987; Characterization and identification of methanol-utilizing Hyphomicrobium strains and a comparison with species of Hyphomonas and Rhodomicrobium . J Gen Appl Microbiol 33:521–542 [CrossRef]
    [Google Scholar]
  30. van Ginkel C. G., van Dijk J. B., Kroon A. G. 1992; Metabolism of hexadecyltrimethylammonium chloride by Pseudomonas strain B1. Appl Environ Microbiol 58:3083–3087
    [Google Scholar]
  31. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.03020-0
Loading
/content/journal/ijsem/10.1099/ijs.0.03020-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error