1887

Abstract

An anaerobic, thermophilic bacterium, strain SET IS-9, was isolated from an Icelandic hot spring. Cells of strain SET IS-9 are short, slightly curved, motile rods. The strain grows chemolithotrophically on CO, producing equimolar quantities of H and CO. It also grows fermentatively on lactate or pyruvate in the presence of yeast extract (0.2 g l). Products of pyruvate fermentation are acetate, CO and H. Growth occurs at 50–70 °C, with an optimum at 65 °C, and at pH 5.0–8.0, with an optimum at pH 5.5–6.0. The generation time during chemolithotrophic growth on CO under optimal conditions is 2.0 h. 16S rRNA gene sequence analysis suggested that the organism belongs to the genus . On the basis of phenotypic features and phylogenetic analysis, sp. nov. is proposed, with the type strain SET IS-9 ( = DSM 21830  = VKM B-2561). An emended description of the genus is also given.

Funding
This study was supported by the:
  • Federal Target Program ‘Scientific and Scientific-Pedagogical Personnel of Innovative Russia 2009–2013’
  • Russian Academy of Sciences ‘Molecular and Cell Biology’ and ‘Origin and Evolution of the Biosphere’
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030288-0
2011-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/10/2532.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030288-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523 [View Article][PubMed]
    [Google Scholar]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  4. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [View Article]
    [Google Scholar]
  5. Kevbrin V. V., Zavarzin G. A. 1992; Effect of sulfur compounds on the growth of the halophilic homoacetic bacterium Acetohalobium arabaticum . Mikrobiologiia 61:812–817
    [Google Scholar]
  6. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester, UK: Wiley;
    [Google Scholar]
  7. Owen R. J., Hill L. R., Lapage S. P. 1969; Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7:503–516 [View Article][PubMed]
    [Google Scholar]
  8. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc;
  9. Slepova T. V., Sokolova T. G., Kolganova T. V., Tourova T. P., Bonch-Osmolovskaya E. A. 2009; Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 59:213–217 [View Article][PubMed]
    [Google Scholar]
  10. Slobodkin A. I., Reysenbach A.-L., Strutz N., Dreier M., Wiegel J. 1997; Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int J Syst Bacteriol 47:541–547 [View Article][PubMed]
    [Google Scholar]
  11. Slobodkin A. I., Sokolova T. G., Lysenko A. M., Wiegel J. 2006; Reclassification of Thermoterrabacterium ferrireducens as Carboxydothermus ferrireducens comb. nov., and emended description of the genus Carboxydothermus . Int J Syst Evol Microbiol 56:2349–2351 [View Article][PubMed]
    [Google Scholar]
  12. Sokolova T. G., Kostrikina N. A., Chernyh N. A., Tourova T. P., Kolganova T. V., Bonch-Osmolovskaya E. A. 2002; Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52:1961–1967 [View Article][PubMed]
    [Google Scholar]
  13. Sokolova T. G., Hanel J., Onyenwoke R. U., Reysenbach A.-L., Banta A., Geyer R., González J. M., Whitman W. B., Wiegel J. 2007; Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov.. Extremophiles 11:145–157 [View Article][PubMed]
    [Google Scholar]
  14. Sokolova T. G., Henstra A. M., Sipma J., Parshina S. N., Stams A. J. M., Lebedinsky A. V. 2009; Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. FEMS Microbiol Ecol 68:131–141 [View Article][PubMed]
    [Google Scholar]
  15. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155 http://www.sgm.ac.uk/pubs/micro_today/pdf/110602.pdf
    [Google Scholar]
  16. Svetlichny V. A., Sokolova T. G., Gerhardt M., Ringpfeil M., Kostrikina N. A., Zavarzin G. A. 1991; Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island. Syst Appl Microbiol 14:254–260 [CrossRef]
    [Google Scholar]
  17. Svetlichny V. A., Sokolova T. G., Kostrikina N. A., Lysenko A. M. 1994; Carboxydothermus restrictus sp. nov. – a new thermophilic anaerobic carboxydotrophic bacterium. Mikrobiologiya 63:523–528 (in Russian)
    [Google Scholar]
  18. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  19. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  20. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [View Article][PubMed]
    [Google Scholar]
  21. Trüper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii . Antonie van Leeuwenhoek 30:225–238 [View Article][PubMed]
    [Google Scholar]
  22. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886[PubMed]
    [Google Scholar]
  23. Wu M., Ren Q., Durkin A. S., Daugherty S. C., Brinkac L. M., Dodson R. J., Madupu R., Sullivan S. A., Kolonay J. F. et al. other authors 2005; Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet 1:e65 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030288-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030288-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error