1887

Abstract

Strain AM-8B5, isolated from Lake Sevan in Armenia, was characterized phenotypically, chemotaxonomically and phylogenetically. This chemo-organoheterotrophic, aerobic, facultatively anaerobic, catalase- and oxidase-positive, non-motile strain grew on NSY medium at NaCl concentrations of 0.0–0.2 % (w/v) and at 4–30 °C. Whole-cell fatty acids were dominated by summed feature 3 (including Cω7 and iso-C 2-OH), C and Cω7. C 2-OH and C 2-OH were the only hydroxylated fatty acids detected. Phylogenetic analysis as well as phenotypic and chemotaxonomic similarities indicated that the novel isolate was affiliated with the genus . 16S rRNA gene similarity values with the four previously described species ranged from 96.2 to 98.7 %. DNA–DNA hybridization experiments showed that the isolate did not belong to any of the previously described species. The isolate could be distinguished from all previously established species based on chemotaxonomic and phenotypic traits. The bacterium possessed a free-living lifestyle and represents a group of bacteria inhabiting the water column of many freshwater lakes. Based on the revealed phylogeny, and chemotaxonomic and phenotypic differences to previously described species, it is proposed that the isolate represents a novel species, sp. nov.; the type strain is AM-8B5 ( = DSM 22349 = CIP 110078).

Funding
This study was supported by the:
  • Austrian Exchange Service (OeAD)
  • Austrian Science Fund (Award P19853)
  • ESF project FREDI (Award FWF I 482-B09)
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.031393-0
2012-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/2/376.html?itemId=/content/journal/ijsem/10.1099/ijs.0.031393-0&mimeType=html&fmt=ahah

References

  1. Alonso C., Zeder M., Piccini C., Conde D., Pernthaler J. 2009; Ecophysiological differences of betaproteobacterial populations in two hydrochemically distinct compartments of a subtropical lagoon. Environ Microbiol 11:867–876 [View Article][PubMed]
    [Google Scholar]
  2. Burkert U., Warnecke F., Babenzien D., Zwirnmann E., Pernthaler J. 2003; Members of a readily enriched beta-proteobacterial clade are common in surface waters of a humic lake. Appl Environ Microbiol 69:6550–6559 [View Article][PubMed]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  4. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  5. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. other authors 2009; The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:Suppl. 1D141–D145 [View Article][PubMed]
    [Google Scholar]
  6. Crump B. C., Hobbie J. E. 2005; Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnol Oceanogr 50:1718–1729 [View Article]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  8. Hahn M. W. 2003; Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 69:5248–5254 [View Article][PubMed]
    [Google Scholar]
  9. Hahn M. W. 2004; Broad diversity of viable bacteria in ‘sterile’ (0.2 micron) filtered water. Res Microbiol 155:688–691 [View Article][PubMed]
    [Google Scholar]
  10. Hahn M. W., Stadler P., Wu Q. L., Pöckl M. 2004; The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57:379–390 [View Article][PubMed]
    [Google Scholar]
  11. Hahn M. W., Pöckl M., Wu Q. L. 2005; Low intraspecific diversity in a Polynucleobacter subcluster population numerically dominating bacterioplankton of a freshwater pond. Appl Environ Microbiol 71:4539–4547 [View Article][PubMed]
    [Google Scholar]
  12. Hahn M. W., Lang E., Brandt U., Wu Q. L., Scheuerl T. 2009; Emended description of the genus Polynucleobacter and the species Polynucleobacter necessarius and proposal of two subspecies, P. necessarius subsp. necessarius subsp. nov. and P. necessarius subsp. asymbioticus subsp. nov.. Int J Syst Evol Microbiol 59:2002–2009 [View Article][PubMed]
    [Google Scholar]
  13. Hahn M. W., Lang E., Brandt U., Lünsdorf H., Wu Q. L., Stackebrandt E. 2010; Polynucleobacter cosmopolitanus sp. nov., free-living planktonic bacteria inhabiting freshwater lakes and rivers. Int J Syst Evol Microbiol 60:166–173 [View Article][PubMed]
    [Google Scholar]
  14. Hahn M. W., Lang E., Tarao M., Brandt U. 2011a; Polynucleobacter rarus sp. nov., a free-living planktonic bacterium isolated from an acidic lake. Int J Syst Evol Microbiol 61:781–787 [View Article][PubMed]
    [Google Scholar]
  15. Hahn M. W., Lang E., Brandt U., Spröer C. 2011b; Polynucleobacter acidiphobus sp. nov., a representative of an abundant group of planktonic freshwater bacteria. Int J Syst Evol Microbiol 61:788–794 [View Article][PubMed]
    [Google Scholar]
  16. Heckmann K., Schmidt H. J. 1987; Polynucleobacter necessarius gen. nov., sp. nov., an obligately endosymbiotic bacterium living in the cytoplasm of Euplotes . Int J Syst Bacteriol 37:456–457 [View Article]
    [Google Scholar]
  17. Hiorns W. D., Methé B. A., Nierzwicki-Bauer S. A., Zehr J. P. 1997; Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Appl Environ Microbiol 63:2957–2960[PubMed]
    [Google Scholar]
  18. Horner-Devine M. C., Leibold M. A., Smith V., Bohannan B. J. M. 2003; Bacterial diversity patterns along a gradient of primary productivity. Ecol Lett 6:613–622 [View Article]
    [Google Scholar]
  19. Hovhannissian R. H. (Oganessian, R.O.). 1994 Lake Sevan, yesterday, today. Erevan: Armenia National Academy of Science (in Russian, with extended summaries in English and Armenian).
  20. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  21. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  22. Newton R. J., Jones S. E., Eiler A., McMahon K. D., Bertilsson S. 2011; A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49 [View Article][PubMed]
    [Google Scholar]
  23. Salcher M. M., Pernthaler J., Zeder M., Psenner R., Posch T. 2008; Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environ Microbiol 10:2074–2086 [View Article][PubMed]
    [Google Scholar]
  24. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  25. Selje N., Brinkhoff T., Simon M. 2005; Detection of abundant bacteria in the Weser estuary using culture-dependent and culture independent approaches. Aquat Microb Ecol 39:17–34 [View Article]
    [Google Scholar]
  26. Shaw A. K., Halpern A. L., Beeson K., Tran B., Venter J. C., Martiny J. B. 2008; It’s all relative: ranking the diversity of aquatic bacterial communities. Environ Microbiol 10:2200–2210 [View Article][PubMed]
    [Google Scholar]
  27. Springer N., Amann R., Ludwig W., Schleifer K. H., Schmidt H. 1996; Polynucleobacter necessarius, an obligate bacterial endosymbiont of the hypotrichous ciliate Euplotes aediculatus, is a member of the beta-subclass of Proteobacteria . FEMS Microbiol Lett 135:333–336[PubMed]
    [Google Scholar]
  28. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  29. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  30. Vannini C., Pöckl M., Petroni G., Wu Q. L., Lang E., Stackebrandt E., Schrallhammer M., Richardson P. M., Hahn M. W. 2007; Endosymbiosis in statu nascendi: close phylogenetic relationship between obligately endosymbiotic and obligately free-living Polynucleobacter strains (Betaproteobacteria). Environ Microbiol 9:347–359 [View Article][PubMed]
    [Google Scholar]
  31. Watanabe K., Komatsu N., Ishii Y., Negishi M. 2009; Effective isolation of bacterioplankton genus Polynucleobacter from freshwater environments grown on photochemically degraded dissolved organic matter. FEMS Microbiol Ecol 67:57–68 [View Article][PubMed]
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  33. Wu Q. L., Hahn M. W. 2006a; Differences in structure and dynamics of Polynucleobacter communities in a temperate and a subtropical lake, revealed at three phylogenetic levels. FEMS Microbiol Ecol 57:67–79 [View Article][PubMed]
    [Google Scholar]
  34. Wu Q. L., Hahn M. W. 2006b; High predictability of the seasonal dynamics of a species-like Polynucleobacter population in a freshwater lake. Environ Microbiol 8:1660–1666 [View Article][PubMed]
    [Google Scholar]
  35. Wu Q. L., Zwart G., Schauer M., Kamst-van Agterveld M. P., Hahn M. W. 2006; Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl Environ Microbiol 72:5478–5485 [View Article][PubMed]
    [Google Scholar]
  36. Zwart G., Crump B. C., Kamst-van Agterveld M. P., Hagen F., Han S.-K. 2002; Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.031393-0
Loading
/content/journal/ijsem/10.1099/ijs.0.031393-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error