1887

Abstract

Two strains of dissimilatory iron-reducing bacteria, which could couple lactate oxidation to iron reduction for energy conservation, were isolated from Arctic marine sediment. The strains, IR12 and IR26, were both Gram-staining-negative, catalase- and oxidase-positive and facultative anaerobes. Their cells were rod-shaped and motile by means of a polar flagellum. Both strains grew in the presence of 0.5–3.5 % (w/v) NaCl, with an absolute requirement for Na. Both were psychrotolerant since they could grow at 4-28 °C but had an optimum growth temperature of 20 °C. Both grew at pH 4.5–9.0 (optimum, pH 7.5). The major fatty acids of strains IR12 and IR26 were summed feature 3 (Cω6 and/or Cω7) and C. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strains IR12 and IR26 belonged to the class and were most closely related to M7, NF22 and ACAM 591 (with 98.5 and 98.8 %, 98.5 and 98.8 %, and 98.5 and 98.8 % sequence similarities, respectively). The genomic DNA G+C contents of strains IR12 and IR26 were 40.0 and 40.3 mol%, respectively. DNA–DNA relatedness data indicated that the two novel strains represented a single species that was distinct from M7, NF22 and ACAM 591. Based on the phylogenetic, phenotypic and DNA–DNA relatedness data, the two new strains represent a single novel species of the genus , for which the name sp. nov. is proposed. The type strain is IR12 ( = KCTC 23109 = JCM 16723).

Funding
This study was supported by the:
  • National Research Foundation (Award 2010-0014384)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.031401-0
2012-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/5/1128.html?itemId=/content/journal/ijsem/10.1099/ijs.0.031401-0&mimeType=html&fmt=ahah

References

  1. Akagawa-Matsushita M., Itoh T., Katayama Y., Kuraishi H., Yamasato K. 1992; Isoprenoid quinone composition of some marine Alteromonas, Murinomonas, Deleya, Pseudomonas and Shewanella species. J Gen Microbiol 138:2275–2281 [CrossRef]
    [Google Scholar]
  2. Atlas R. M. 2004 Handbook of Microbiological Media, 3rd edn. Boca Raton: CRC Press; [View Article]
    [Google Scholar]
  3. Bowman J. P. 2005; Genus XIII. Shewanella MacDonell and Colwell 1986, 355VP (Effective publication: MacDonell and Colwell 1985, 180). In Bergey’s Manual of Systematic Bacteriology,, 2nd edn. vol. 2B pp. 480–491 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  4. Bowman J. P., McCammon S. A., Nichols D. S., Skerratt J. H., Rea S. M., Nichols P. D., McMeekin T. A. 1997; Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047 [View Article][PubMed]
    [Google Scholar]
  5. Bozal N., Montes M. J., Tudela E., Jiménez F., Guinea J. 2002; Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52:195–205[PubMed]
    [Google Scholar]
  6. Bozal N., Montes M. J., Miñana-Galbis D., Manresa A., Mercadé E. 2009; Shewanella vesiculosa sp. nov., a psychrotolerant bacterium isolated from an Antarctic coastal area. Int J Syst Evol Microbiol 59:336–340 [View Article][PubMed]
    [Google Scholar]
  7. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  8. Coates J. D., Lonergan D. J., Philips E. J., Jenter H., Lovley D. R. 1995; Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Arch Microbiol 164:406–413 [View Article][PubMed]
    [Google Scholar]
  9. Coates J. D., Ellis D. J., Gaw C. V., Lovley D. R. 1999; Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol 49:1615–1622 [View Article][PubMed]
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  11. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773 [View Article][PubMed]
    [Google Scholar]
  12. Gorby Y. A., Yanina S., McLean J. S., Rosso K. M., Moyles D., Dohnalkova A., Beveridge T. J., Chang I. S., Kim B. H. other authors 2006; Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363 [View Article][PubMed]
    [Google Scholar]
  13. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  14. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [View Article]
    [Google Scholar]
  15. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132 [View Article]
    [Google Scholar]
  16. Kim H. J., Park H. S., Hyun M. S., Chang I. S., Kim M., Kim B. H. 2002; A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. . Enzyme Microb Technol 30:145–152 [View Article]
    [Google Scholar]
  17. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  18. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: John Wiley;
    [Google Scholar]
  19. Lovley D. R., Phillips E. J. 1986; Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac river. Appl Environ Microbiol 52:751–757[PubMed]
    [Google Scholar]
  20. Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J., Gorby Y. A., Goodwin S. 1993; Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344 [View Article][PubMed]
    [Google Scholar]
  21. Lovley D. R., Holmes D. E., Nevin K. P. 2004; Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286 [View Article][PubMed]
    [Google Scholar]
  22. MacDonell M. T., Colwell R. R. 1985; Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella . Syst Appl Microbiol 6:171–182 [View Article]
    [Google Scholar]
  23. MIDI 1999 Sherlock Microbial Identification System, Operating Manual Version 3.0 Newark, DE: MIDI;
    [Google Scholar]
  24. Miller T. L., Wolin M. J. 1974; A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987[PubMed]
    [Google Scholar]
  25. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  26. Ringeisen B. R., Henderson E., Wu P. K., Pietron J., Ray R., Little B., Biffinger J. C., Jones-Meehan J. M. 2006; High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634 [View Article][PubMed]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  28. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  30. Verma P., Pandey P. K., Gupta A. K., Kim H. J., Baik K. S., Seong C. N., Patole M. S., Shouche Y. S. 2011; Shewanella indica sp. nov., isolated from sediment of the Arabian Sea. Int J Syst Evol Microbiol 61:2058–2064 [View Article][PubMed]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  32. Weber K. A., Achenbach L. A., Coates J. D. 2006; Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764 [View Article][PubMed]
    [Google Scholar]
  33. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.031401-0
Loading
/content/journal/ijsem/10.1099/ijs.0.031401-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error