1887

Abstract

A novel bacterium (strain YIM 65583) belonging to the genus was isolated from surface-sterilized tissue of L., which was collected from Yunnan province, south-west China. Its morphology, physiology and biochemical features were consistent with those of members of the genus . Analysis of the 16S rRNA gene sequence of strain YIM 65583 further confirmed that it should be classified as a member of the genus and was most closely related to FA2 (99.7 %) and YIM 003 (98.3 %). The isolate was Gram-negative and formed yellow-pigmented colonies on ISP 2 medium. It grew optimally at pH 6.0–8.0, at 20–37 °C and in the presence of 0–1 % (w/v) NaCl. The major respiratory lipoquinone was ubiquinone-10; Cω7, anteiso-C, C-2OH, Cω6, C and C were the major fatty acids. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and sphingoglycolipid. The G+C content of the genomic DNA was 63.3 mol%. The DNA–DNA relatedness values of the isolate YIM 65583 with FA2 and YIM 003 were 43.1 % and 37.9 %, respectively. Based on these features, it is concluded that the strain represents a novel species of the genus s, for which the name sp. nov. is proposed, with YIM 65583 ( = CCTCC AA 209035 = JCM 17394) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.031484-0
2012-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1576.html?itemId=/content/journal/ijsem/10.1099/ijs.0.031484-0&mimeType=html&fmt=ahah

References

  1. Cerny G. 1978; Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:113–122 [View Article]
    [Google Scholar]
  2. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  5. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  6. Gram H. C. 1884; Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschr Med 2:185–189
    [Google Scholar]
  7. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [View Article][PubMed]
    [Google Scholar]
  8. He L., Li W., Huang Y., Wang L., Liu Z., Lanoot B., Vancanneyt M., Swings J. 2005; Streptomyces jietaisiensis sp. nov., isolated from soil in northern China. Int J Syst Evol Microbiol 55:1939–1944 [View Article][PubMed]
    [Google Scholar]
  9. Huang H. D., Wang W., Ma T., Li G. Q., Liang F. L., Liu R. L. 2009; Sphingomonas sanxanigenens sp. nov., isolated from soil. Int J Syst Evol Microbiol 59:719–723 [View Article][PubMed]
    [Google Scholar]
  10. Jahnke K. D. 1992; basic computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [View Article]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  12. Kroppenstedt R. M. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367 [View Article]
    [Google Scholar]
  13. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [View Article][PubMed]
    [Google Scholar]
  14. Li W. J., Zhang Y. Q., Park D. J., Li C. T., Xu L. H., Kim C. J., Jiang C. L. 2004; Duganella violaceinigra sp. nov., a novel mesophilic bacterium isolated from forest soil. Int J Syst Evol Microbiol 54:1811–1814 [View Article][PubMed]
    [Google Scholar]
  15. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E. S., Jiang C. L. 2007; Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  16. Li J., Zhao G. Z., Chen H. H., Wang H. B., Qin S., Zhu W. Y., Xu L. H., Jiang C. L., Li W. J. 2008; Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. Lett Appl Microbiol 47:574–580 [View Article][PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  18. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  19. Qin S., Li J., Chen H. H., Zhao G. Z., Zhu W. Y., Jiang C. L., Xu L. H., Li W. J. 2009; Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186 [View Article][PubMed]
    [Google Scholar]
  20. Rivas R., Abril A., Trujillo M. E., Velázquez E. 2004; Sphingomonas phyllosphaerae sp. nov., from the phyllosphere of Acacia caven in Argentina. Int J Syst Evol Microbiol 54:2147–2150 [View Article][PubMed]
    [Google Scholar]
  21. Roh S. W., Kim K. H., Nam Y. D., Chang H. W., Kim M. S., Oh H. M., Bae J. W. 2009; Sphingomonas aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 59:1359–1363 [View Article][PubMed]
    [Google Scholar]
  22. Romanenko L. A., Tanaka N., Frolova G. M., Mikhailov V. V. 2009; Sphingomonas japonica sp. nov., isolated from the marine crustacean Paralithodes camtschatica . Int J Syst Evol Microbiol 59:1179–1182 [View Article][PubMed]
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  24. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  25. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417[PubMed]
    [Google Scholar]
  26. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  27. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119[PubMed] [CrossRef]
    [Google Scholar]
  28. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K. 2002; Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52:1485–1496 [View Article][PubMed]
    [Google Scholar]
  29. Zhang Y. Q., Chen Y. G., Li W. J., Tian X. P., Xu L. H., Jiang C. L. 2005; Sphingomonas yunnanensis sp. nov., a novel Gram-negative bacterium from a contaminated plate. In J Syst Evol Microbiol 552361–2364 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.031484-0
Loading
/content/journal/ijsem/10.1099/ijs.0.031484-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error