1887

Abstract

A halophilic archaeon, strain TBN51, was isolated from a marine solar saltern in Jiangsu, China. The colonies were red-pigmented and the cells were pleomorphic, motile and Gram-staining-negative. The strain was able to grow at 20–55 °C (optimum 42 °C), in the presence of 1.4–5.1 M NaCl (optimum 2.6 M), with 0–1.0 M MgCl (optimum 0.05 M) and at pH 5.5–9.5 (optimum pH 7.0). Cells lysed in distilled water; the minimal NaCl concentration to prevent such lysis was 8 % (w/v). The major polar lipids of strain TBN51 were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and an unidentified glycolipid. The latter lipid and a minor glycolipid also detected in the novel strain were chromatographically identical to sulfated and non-sulfated mannosyl glucosyl diether, respectively. Analysis revealed that strain TBN51 had three dissimilar 16S rRNA genes. Phylogenetic analysis based on the sequences of these genes indicated that the novel strain was most closely related to JCM 9738 (89.2–94.8 % sequence similarity) and DSM 19301 (88.8–94.8 %). In similar comparisons of ′ gene sequences, strain TBN51 also appeared most closely related to JCM 9738 (88.5 % sequence similarity) and DSM 19301 (88.1 %). The genomic DNA G+C content of strain TBN51 was 69.1 mol%. The results of DNA–DNA hybridizations indicated that strain TBN51 represented a novel species since it showed relatedness values of only 23 % with JCM 9738 and 21 % with DSM 19301. It was concluded that strain TBN51 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TBN51 ( = CGMCC 1.10457 = JCM 17095).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 30970006)
  • Chinese Academy of Sciences’ Institute of Microbiology (Award SKLMR-20100604)
  • MEL Young Scientist Visiting Fellowship (Award MELRS0931)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.031989-0
2012-06-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/6/1235.html?itemId=/content/journal/ijsem/10.1099/ijs.0.031989-0&mimeType=html&fmt=ahah

References

  1. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp. 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  2. Cui H.-L., Lin Z.-Y., Dong Y., Zhou P.-J., Liu S.-J. 2007; Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57:2204–2206[PubMed] [CrossRef]
    [Google Scholar]
  3. Cui H.-L., Zhou P.-J., Oren A., Liu S.-J. 2009; Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium . Extremophiles 13:31–37 [View Article][PubMed]
    [Google Scholar]
  4. Cui H.-L., Gao X., Sun F.-F., Dong Y., Xu X.-W., Zhou Y.-G., Liu H.-C., Oren A., Zhou P.-J. 2010; Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:1366–1371 [View Article][PubMed]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  6. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485[PubMed]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  9. Gonzalez C., Gutierrez C., Ramirez C. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715[PubMed] [CrossRef]
    [Google Scholar]
  10. Gutiérrez C., González C. 1972; Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24:516–517[PubMed]
    [Google Scholar]
  11. Gutiérrez M. C., Castillo A. M., Kamekura M., Ventosa A. 2008; Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 58:2880–2884[PubMed] [CrossRef]
    [Google Scholar]
  12. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article]
    [Google Scholar]
  13. Ihara K., Watanabe S., Tamura T. 1997; Haloarcula argentinensis sp. nov. and Haloarcula mukohataei sp. nov., two new extremely halophilic archaea collected in Argentina. Int J Syst Bacteriol 47:73–77 [View Article][PubMed]
    [Google Scholar]
  14. Kates M. 1986 Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier;
    [Google Scholar]
  15. Kharroub K., Lizama C., Aguilera M., Boulahrouf A., Campos V., Ramos-Cormenzana A., Monteoliva-Sánchez M. 2008; Halomicrobium katesii sp. nov., an extremely halophilic archaeon. Int J Syst Evol Microbiol 58:2354–2358 [View Article][PubMed]
    [Google Scholar]
  16. Kumar S., Nei M., Dudley J., Tamura K. 2008; mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306 [View Article][PubMed]
    [Google Scholar]
  17. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  18. McDade J. J., Weaver R. H. 1959; Rapid methods for the detection of gelatin hydrolysis. J Bacteriol 77:60–64[PubMed]
    [Google Scholar]
  19. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T. 2010; Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B′ (rpoB′) gene. Int J Syst Evol Microbiol 60:2398–2408[PubMed] [CrossRef]
    [Google Scholar]
  20. Namwong S., Tanasupawat S., Kudo T., Itoh T. 2011; Haloarcula salaria sp. nov. and Haloarcula tradensis sp. nov., isolated from salt in Thai fish sauce. Int J Syst Evol Microbiol 61:231–236 [View Article][PubMed]
    [Google Scholar]
  21. Ng W.-L., Yang C.-F., Halladay J. T., Arora A., DasSarma S. 1995; Protocol 25. Isolation of genomic and plasmid DNAs from Halobacterium halobium . In Archaea: a Laboratory Manual: Halophiles pp. 179–180 Edited by DasSarma S., Fleischmann E. M. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [View Article]
    [Google Scholar]
  23. Oren A., Elevi R., Watanabe S., Ihara K., Corcelli A. 2002; Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei . Int J Syst Evol Microbiol 52:1831–1835 [View Article][PubMed]
    [Google Scholar]
  24. Oren A., Arahal D. R., Ventosa A. 2009; Emended descriptions of genera of the family Halobacteriaceae . Int J Syst Evol Microbiol 59:637–642 [View Article][PubMed]
    [Google Scholar]
  25. Owen R. J., Pitcher D. 1985; Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. In Chemical Methods in Bacterial Systematics pp. 67–93 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  26. Ross H. N. M., Collins M. D., Tindall B. J., Grant W. D. 1981; A rapid procedure for the detection of archaebacterial lipids in halophilic bacteria. J Gen Microbiol 123:75–80
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  28. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  29. Vaskovsky V. E., Kostetsky E. Y. 1968; Modified spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 9:396[PubMed]
    [Google Scholar]
  30. Yang Y., Cui H.-L., Zhou P.-J., Liu S.-J. 2007; Haloarcula amylolytica sp. nov., an extremely halophilic archaeon isolated from Aibi salt lake in Xin-Jiang, China. Int J Syst Evol Microbiol 57:103–106 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.031989-0
Loading
/content/journal/ijsem/10.1099/ijs.0.031989-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error