1887

Abstract

Two halophilic archaea, strains TBN53 and CSW2.24.4, were characterized to elucidate their taxonomic status. Strain TBN53 was isolated from the Taibei marine solar saltern near Lianyungang city, Jiangsu province, China, whereas strain CSW2.24.4 was isolated from a saltern crystallizer in Victoria, Australia. Cells of the two strains were pleomorphic, stained Gram-negative and produced red-pigmented colonies. Strain TBN53 was able to grow at 25–55 °C (optimum 45 °C), with 1.4–5.1 M NaCl (optimum 2.6–3.9 M NaCl), with 0–1.0 M MgCl (optimum 0–0.1 M MgCl) and at pH 5.5–9.5 (optimum pH 7.0), whereas strain CSW2.24.4 was able to grow at 25–45 °C (optimum 37 °C), with 2.6–5.1 M NaCl (optimum 3.4 M NaCl), with 0.01–0.7 M MgCl (optimum 0.05 M MgCl) and at pH 5.5–9.5 (optimum pH 7.0–7.5). Cells of the two isolates lysed in distilled water. The minimum NaCl concentrations that prevented cell lysis were 8 % (w/v) for strain TBN53 and 12 % (w/v) for strain CSW2.24.4. The major polar lipids of the two strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol sulfate, with two glycolipids chromatographically identical to sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, respectively. Trace amounts of other unidentified lipids were also detected. On the basis of 16S rRNA gene sequence analysis, strains TBN53 and CSW2.24.4 showed 94.1 % similarity to each other and were closely related to TNN18 (95.0 and 94.7 % similarity, respectively). Levels of ′ gene sequence similarity between strains TBN53 and CSW2.24.4, and between these strains and TNN18 were 88.5, 88.5 and 88.1 %, respectively. The DNA G+C contents of strains TBN53 and CSW2.24.4 were 69.2 and 67.0 mol%, respectively. The level of DNA–DNA relatedness between strain TBN53 and strain CSW2.24.4 was 25 %, and these two strains showed low levels of DNA–DNA relatedness with TNN18 (30 and 29 % relatedness, respectively). Based on these phenotypic, chemotaxonomic and phylogenetic properties, two novel species of the genus are proposed to accommodate these two strains, sp. nov. (type strain TBN53 = CGMCC 1.10331 = JCM 16811) and sp. nov. (type strain CSW2.24.4 = DSM 18730 = CGMCC 1.10710 = JCM 14359).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 30970006)
  • Institute of Microbiology, Chinese Academy of Sciences (Award SKLMR-20100604)
  • State Key Laboratory of Marine Environmental Science, Xiamen University (Award MELRS0931)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.032169-0
2012-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/6/1307.html?itemId=/content/journal/ijsem/10.1099/ijs.0.032169-0&mimeType=html&fmt=ahah

References

  1. Burns D. G., Camakaris H. M., Janssen P. H., Dyall-Smith M. L. 2004; Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265 [View Article][PubMed]
    [Google Scholar]
  2. Burns D. G., Janssen P. H., Itoh T., Kamekura M., Li Z., Jensen G., Rodríguez-Valera F., Bolhuis H., Dyall-Smith M. L. 2007; Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392 [View Article][PubMed]
    [Google Scholar]
  3. Burns D. G., Janssen P. H., Itoh T., Kamekura M., Echigo A., Dyall-Smith M. L. 2010a; Halonotius pteroides gen. nov., sp. nov., an extremely halophilic archaeon recovered from a saltern crystallizer. Int J Syst Evol Microbiol 60:1196–1199 [View Article][PubMed]
    [Google Scholar]
  4. Burns D. G., Janssen P. H., Itoh T., Minegishi H., Usami R., Kamekura M., Dyall-Smith M. L. 2010b; Natronomonas moolapensis sp. nov., non-alkaliphilic isolates recovered from a solar saltern crystallizer pond, and emended description of the genus Natronomonas . Int J Syst Evol Microbiol 60:1173–1176 [View Article][PubMed]
    [Google Scholar]
  5. Collins M. D. 1985; Isoprenoid quinone analysis in bacterial classification and identification. In Chemical Methods in Bacterial Systematics pp. 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  6. Cui H.-L., Zhou P.-J., Oren A., Liu S.-J. 2009; Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium . Extremophiles 13:31–37 [View Article][PubMed]
    [Google Scholar]
  7. Cui H.-L., Gao X., Li X.-Y., Xu X.-W., Zhou Y.-G., Liu H.-C., Zhou P.-J. 2010a; Haloplanus vescus sp. nov., an extremely halophilic archaeon from a marine solar saltern, and emended description of the genus Haloplanus . Int J Syst Evol Microbiol 60:1824–1827 [View Article][PubMed]
    [Google Scholar]
  8. Cui H.-L., Gao X., Sun F.-F., Dong Y., Xu X.-W., Zhou Y.-G., Liu H.-C., Oren A., Zhou P.-J. 2010b; Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:1366–1371 [View Article][PubMed]
    [Google Scholar]
  9. Cui H.-L., Li X.-Y., Gao X., Xu X.-W., Zhou Y.-G., Liu H.-C., Oren A., Zhou P.-J. 2010c; Halopelagius inordinatus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:2089–2093 [View Article][PubMed]
    [Google Scholar]
  10. Cui H.-L., Gao X., Li X.-Y., Xu X.-W., Zhou Y.-G., Liu H.-C., Zhou P.-J. 2010d; Halosarcina limi sp. nov., a halophilic archaeon from a marine solar saltern, and emended description of the genus Halosarcina . Int J Syst Evol Microbiol 60:2462–3466 [View Article][PubMed]
    [Google Scholar]
  11. Cui H.-L., Gao X., Yang X., Xu X.-W. 2010e; Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Extremophiles 14:493–499 [View Article][PubMed]
    [Google Scholar]
  12. Cui H.-L., Sun F.-F., Gao X., Dong Y., Xu X.-W., Zhou Y.-G., Liu H.-C., Oren A., Zhou P.-J. 2010f; Haladaptatus litoreus sp. nov., an extremely halophilic archaeon from a marine solar saltern, and emended description of the genus Haladaptatus . Int J Syst Evol Microbiol 60:1085–1089 [View Article][PubMed]
    [Google Scholar]
  13. Cui H.-L., Yang X., Gao X., Li X.-Y., Xu X.-W., Zhou Y.-G., Liu H.-C., Zhou P.-J. 2010g; Halogeometricum rufum sp. nov., a halophilic archaeon from a marine solar saltern, and emended description of the genus Halogeometricum . Int J Syst Evol Microbiol 60:2613–2617 [View Article][PubMed]
    [Google Scholar]
  14. Cui H.-L., Gao X., Yang X., Xu X.-W. 2011a; Haloplanus aerogenes sp. nov., an extremely halophilic archaeon from a marine solar saltern. Int J Syst Evol Microbiol 61:965–968 [View Article][PubMed]
    [Google Scholar]
  15. Cui H.-L., Gao X., Yang X., Xu X.-W. 2011b; Halolamina pelagica gen. nov., sp. nov., a new member of the family Halobacteriaceae . Int J Syst Evol Microbiol 61:1617–1621 [View Article][PubMed]
    [Google Scholar]
  16. Cui H.-L., Yang X., Gao X., Xu X.-W. 2011c; Halogranum gelatinilyticum sp. nov. and Halogranum amylolyticum sp. nov., isolated from a marine solar saltern, and emended description of the genus Halogranum . Int J Syst Evol Microbiol 61:911–915 [View Article][PubMed]
    [Google Scholar]
  17. Cui H.-L., Yang X., Gao X., Xu X.-W. 2011d; Halobellus clavatus gen. nov., sp. nov. and Halorientalis regularis gen. nov., sp. nov., two new members of the family Halobacteriaceae . Int J Syst Evol Microbiol 61:2682–2689 [View Article][PubMed]
    [Google Scholar]
  18. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  19. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  20. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  21. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article]
    [Google Scholar]
  22. Inoue K., Itoh T., Ohkuma M., Kogure K. 2011; Halomarina oriensis gen. nov., sp. nov., a halophilic archaeon isolated from a seawater aquarium. Int J Syst Evol Microbiol 61:942–946 [View Article][PubMed]
    [Google Scholar]
  23. Kates M. 1986 Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier;
    [Google Scholar]
  24. Kumar S., Nei M., Dudley J., Tamura K. 2008; mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306 [View Article][PubMed]
    [Google Scholar]
  25. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  26. Minegishi H., Echigo A., Nagaoka S., Kamekura M., Usami R. 2010a; Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol 60:2513–2516 [View Article][PubMed]
    [Google Scholar]
  27. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T. 2010b; Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B′ (rpoB′) gene. Int J Syst Evol Microbiol 60:2398–2408 [View Article][PubMed]
    [Google Scholar]
  28. Ng W.-L., Yang C.-F., Halladay J. T., Arora A., DasSarma S. 1995; Protocol 25. Isolation of genomic and plasmid DNAs from Halobacterium halobium . In Archaea: a Laboratory Manual: Halophiles pp. 179–180 Edited by DasSarma S., Fleischmann E. M. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  29. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [View Article]
    [Google Scholar]
  30. Ross H. N. M., Collins M. D., Tindall B. J., Grant W. D. 1981; A rapid procedure for the detection of archaebacterial lipids in halophilic bacteria. J Gen Microbiol 123:75–80
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  32. Shimane Y., Hatada Y., Minegishi H., Echigo A., Nagaoka S., Miyazaki M., Ohta Y., Maruyama T., Usami R. other authors 2011; Salarchaeum japonicum gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea isolated from commercial salt. Int J Syst Evol Microbiol 61:2266–2270 [View Article][PubMed]
    [Google Scholar]
  33. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.032169-0
Loading
/content/journal/ijsem/10.1099/ijs.0.032169-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error