1887

Abstract

A novel obligately anaerobic, non-spore-forming, rod-shaped mesophilic bacterium, which stained Gram-positive but showed the typical cell wall structure of Gram-negative bacteria, was isolated from an upflow anaerobic filter treating abattoir wastewaters in Tunisia. The strain, designated LIND7H, grew at 20–45 °C (optimum 35–40 °C) and at pH 5.0–8.5 (optimum pH 6.5–7.5). It did not require NaCl for growth, but was able to grow in the presence of up to 2 % NaCl. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite were not used as terminal electron acceptors. Strain LIND7H used cellobiose, glucose, lactose, mannose, maltose, peptone, rhamnose, raffinose, sucrose and xylose as electron donors. The main fermentation products from glucose metabolism were lactate, acetate, butyrate and isobutyrate. The predominant cellular fatty acids were anteiso-C, C, C 2-OH and a summed feature consisting of Cω6,9 and/or anteiso-C, and the major menaquinones were MK-9, MK-9(H) and MK-10. The G+C content of the genomic DNA was 41.4 mol%. Although the closest phylogenetic relatives of strain LIND7H were , and , analysis of the gene sequence showed that strain LIND7H was not a member of the genus . On the basis of phylogenetic inference and phenotypic properties, strain LIND7H ( = CCUG 60892 = DSM 23697 = JCM 16313) is proposed as the type strain of a novel species in a new genus within the family , gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.032508-0
2012-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/10/2522.html?itemId=/content/journal/ijsem/10.1099/ijs.0.032508-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296[PubMed]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  4. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [View Article]
    [Google Scholar]
  5. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. 2005; Diversity of the human intestinal microbial flora. Science 308:1635–1638 [View Article][PubMed]
    [Google Scholar]
  6. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F. S., Garcia J.-L. 1997; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019 [View Article][PubMed]
    [Google Scholar]
  7. Fardeau M.-L., Magot M., Patel B. K. C., Thomas P., Garcia J.-L., Ollivier B. 2000; Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50:2141–2149 [View Article][PubMed]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  9. Gannoun H., Bouallagui H., Okbi A., Sayadi S., Hamdi M. 2009; Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter. J Hazard Mater 170:263–271 [View Article][PubMed]
    [Google Scholar]
  10. Gherna R., Woese C. R. 1992; A partial phylogenetic analysis of the “Flavobacter-Bacteroides” phylum: basis for taxonomic restructuring. Syst Appl Microbiol 15:513–521 [View Article][PubMed]
    [Google Scholar]
  11. Gill S. R., Pop M., Deboy R. T., Eckburg P. B., Turnbaugh P. J., Samuel B. S., Gordon J. I., Relman D. A., Fraser-Liggett C. M., Nelson K. E. 2006; Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359 [View Article][PubMed]
    [Google Scholar]
  12. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  13. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132 [View Article]
    [Google Scholar]
  14. Johnson J. L., Moore W. E. C., Moore L. V. H. 1986; Bacteroides caccae sp.nov., Bacteroides merdae sp. nov., and Bacteroides stercoris sp. nov. isolated from human feces. Int J Syst Bacteriol 36:499–501 [View Article]
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 211–232 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  16. Krieg N. R. 2011; Family IV. Porphyromonadaceae fam. nov.. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 4 pp. 61–70 Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B. New York: Springer;
    [Google Scholar]
  17. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  19. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  20. Miller T. L., Wolin M. J. 1974; A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987[PubMed]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  22. Sakamoto M., Benno Y. 2006; Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol 56:1599–1605 [View Article][PubMed]
    [Google Scholar]
  23. Sakamoto M., Ohkuma M. 2010; Usefulness of the hsp60 gene for the identification and classification of Gram-negative anaerobic rods. J Med Microbiol 59:1293–1302 [View Article][PubMed]
    [Google Scholar]
  24. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y. 2002; Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov.. Int J Syst Evol Microbiol 52:841–849 [View Article][PubMed]
    [Google Scholar]
  25. Sakamoto M., Kitahara M., Benno Y. 2007; Parabacteroides johnsonii sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57:293–296 [View Article][PubMed]
    [Google Scholar]
  26. Sakamoto M., Suzuki N., Matsunaga N., Koshihara K., Seki M., Komiya H., Benno Y. 2009; Parabacteroides gordonii sp. nov., isolated from human blood cultures. Int J Syst Evol Microbiol 59:2843–2847 [View Article][PubMed]
    [Google Scholar]
  27. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsletter 20:1–6
    [Google Scholar]
  28. Shah H. N., Collins M. D. 1988; Proposal for reclassification of Bacteroides asaccharolyticus, Bacteroides gingivalis, and Bacteroides endodontalis in a new genus, Porphyromonas . Int J Syst Bacteriol 38:128–131 [View Article]
    [Google Scholar]
  29. Song Y., Liu C., Lee J., Bolanos M., Vaisanen M. L., Finegold S. M. 2005; Bacteroides goldsteinii sp. nov.” isolated from clinical specimens of human intestinal origin. J Clin Microbiol 43:4522–4527 [View Article][PubMed]
    [Google Scholar]
  30. Thabet O. B., Fardeau M.-L., Joulian C., Thomas P., Hamdi M., Garcia J.-L., Ollivier B. 2004; Clostridium tunisiense sp. nov., a new proteolytic, sulfur-reducing bacterium isolated from an olive mill wastewater contaminated by phosphogypse. Anaerobe 10:185–190 [View Article][PubMed]
    [Google Scholar]
  31. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14:305–310 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.032508-0
Loading
/content/journal/ijsem/10.1099/ijs.0.032508-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error