1887

Abstract

A pink-pigmented, facultatively methylotrophic bacterium, strain 35a, was isolated from the leaves of . Cells of strain 35a were Gram-reaction-negative, motile, non-spore-forming rods. The highest 16S rRNA gene pairwise sequence similarities for strain 35a were found with the strains of 5317S-33 (96.7 %), ‘’ YIM 48816 (96.6 %) and S2R03-9 (96.3 %). 16S rRNA gene sequence similarities with the type strains of all other recognized species of the genus were below 96 %. Major cellular fatty acids were Cω7, C and C. The results of DNA–DNA hybridization experiments, analysis of gene sequences, fatty acid profiles, whole-cell MALDI-TOF/MS spectral pattern analysis, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 35a from its nearest phylogenetic neighbours. Strain 35a is therefore considered to represent a novel species within the genus , for which the name sp. nov. is proposed. The type strain is 35a ( = DSM 24028 = NBRC 107715).

Funding
This study was supported by the:
  • Japan Science and Technology Agency (Award Research for Promoting Technological Seeds)
  • Sekisui Chemical Co
  • Institute of Fermentation, Osaka (IFO)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033019-0
2012-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1647.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033019-0&mimeType=html&fmt=ahah

References

  1. Aslam Z., Lee C. S., Kim K. H., Im W. T., Ten L. N., Lee S. T. 2007; Methylobacterium jeotgali sp. nov., a non-pigmented, facultatively methylotrophic bacterium isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 57:566–571 [View Article][PubMed]
    [Google Scholar]
  2. Cao Y. R., Wang Q., Jin R. X., Tang S. K., Jiang Y., He W. X., Lai H. X., Xu L. H., Jiang C. L. 2011; Methylobacterium soli sp. nov. a methanol-utilizing bacterium isolated from the forest soil. Antonie van Leeuwenhoek 99:629–634 [View Article][PubMed]
    [Google Scholar]
  3. Choi O., Kim J., Kim J. G., Jeong Y., Moon J. S., Park C. S., Hwang I. 2008; Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 146:657–668 [View Article][PubMed]
    [Google Scholar]
  4. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  5. Corpe W. A., Rheem S. 1989; Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Lett 62:243–249 [View Article]
    [Google Scholar]
  6. Delmotte N., Knief C., Chaffron S., Innerebner G., Roschitzki B., Schlapbach R., von Mering C., Vorholt J. A. 2009; Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433 [View Article][PubMed]
    [Google Scholar]
  7. Doronina N. V., Trotsenko Y. A., Tourova T. P., Kuznetsov B. B., Leisinger T. 2000; Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. – novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst Appl Microbiol 23:210–218 [View Article][PubMed]
    [Google Scholar]
  8. Doronina N. V., Trotsenko Y. A., Kuznetsov B. B., Tourova T. P., Salkinoja-Salonen M. S. 2002; Methylobacterium suomiense sp. nov. and Methylobacterium lusitanum sp. nov., aerobic, pink-pigmented, facultatively methylotrophic bacteria. Int J Syst Evol Microbiol 52:773–776 [View Article][PubMed]
    [Google Scholar]
  9. Duine J. A., Frank J. 1990; The role of PQQ and quinoproteins in methylotrophic bacteria. FEMS Microbiol Rev 87:221–226 [View Article]
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  12. Freiwald A., Sauer S. 2009; Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc 4:732–742 [View Article][PubMed]
    [Google Scholar]
  13. Glickmann E., Dessaux Y. 1995; A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796[PubMed]
    [Google Scholar]
  14. Green P. N. 1992; The genus Methylobacterium . In The Prokaryotes, 2nd edn. pp. 2342–2349 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  15. Green P. N., Bousfield I. J., Hood D. 1988; Three new Methylobacterium species: M. rhodesianum sp. nov., M. zatmanii sp. nov., and M. fujisawaense sp. nov.. Int J Syst Evol Microbiol 38:124–127
    [Google Scholar]
  16. Hill J. E., Penny S. L., Crowell K. G., Goh S. H., Hemmingsen S. M. 2004; cpnDB: a chaperonin sequence database. Genome Res 14:1669–1675 [View Article][PubMed]
    [Google Scholar]
  17. Hoppe T., Peters K., Schmidt F. 2011; Methylobacterium bullatum sp. nov., a methylotrophic bacterium isolated from Funaria hygrometrica . Syst Appl Microbiol 34:482–486 [View Article][PubMed]
    [Google Scholar]
  18. Idris R., Kuffner M., Bodrossy L., Puschenreiter M., Monchy S., Wenzel W. W., Sessitsch A. 2006; Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov.. Syst Appl Microbiol 29:634–644 [View Article][PubMed]
    [Google Scholar]
  19. Kang Y.-S., Kim J., Shin H.-D., Nam Y.-D., Bae J.-W., Jeon C. O., Park W. 2007; Methylobacterium platani sp. nov., isolated from a leaf of the tree Platanus orientalis . Int J Syst Evol Microbiol 57:2849–2853 [View Article][PubMed]
    [Google Scholar]
  20. Kato Y., Asahara M., Arai D., Goto K., Yokota A. 2005; Reclassification of Methylobacterium chloromethanicum and Methylobacterium dichloromethanicum as later subjective synonyms of Methylobacterium extorquens and of Methylobacterium lusitanum as a later subjective synonym of Methylobacterium rhodesianum . J Gen Appl Microbiol 51:287–299 [View Article][PubMed]
    [Google Scholar]
  21. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  22. Knani M., Corpe W. A., Rohmer M. 1994; Bacterial hopanoids from pink-pigmented facultative methylotrophs (PPFMs) and from green plant surfaces. Microbiology 140:2755–2759 [View Article]
    [Google Scholar]
  23. Knief C., Ramette A., Frances L., Alonso-Blanco C., Vorholt J. A. 2010a; Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4:719–728 [View Article][PubMed]
    [Google Scholar]
  24. Knief C., Frances L., Vorholt J. A. 2010b; Competitiveness of diverse Methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1. Microb Ecol 60:440–452 [View Article][PubMed]
    [Google Scholar]
  25. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  26. Lane D. J. 1991; 16S/23S sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  27. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. other authors 2007; clustal w and clustal x version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  28. Lee S. W., Oh H. W., Lee K. H., Ahn T. Y. 2009; Methylobacterium dankookense sp. nov., isolated from drinking water. J Microbiol 47:716–720 [View Article][PubMed]
    [Google Scholar]
  29. Madhaiyan M., Poonguzhali S., Kwon S.-W., Sa T.-M. 2009; Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice. Int J Syst Evol Microbiol 59:22–27 [View Article][PubMed]
    [Google Scholar]
  30. Madhaiyan M., Poonguzhali S., Senthilkumar M., Lee J.-S., Lee K.-C. 2012; Methylobacterium gossipiicola sp. nov., a pink-pigmented facultative methylotrophic bacteria isolated from cotton phyllosphere. Int J Syst Evol Microbiol 62:162–167 [View Article][PubMed]
    [Google Scholar]
  31. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  32. McDonald I. R., Doronina N. V., Trotsenko Y. A., McAnulla C., Murrell J. C. 2001; Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. Int J Syst Evol Microbiol 51:119–122[PubMed]
    [Google Scholar]
  33. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  34. Myers E. W., Miller W. 1988; Optimal alignments in linear space. Comput Appl Biosci 4:11–17[PubMed]
    [Google Scholar]
  35. Nei M., Kumar S. 2000 Molecular Evolution and Phylogenetics New York: Oxford University Press;
    [Google Scholar]
  36. Sahin N., Kato Y., Yilmaz F. 2008; Taxonomy of oxalotrophic Methylobacterium strains. Naturwissenschaften 95:931–938 [View Article][PubMed]
    [Google Scholar]
  37. Sahin N., Gonzalez J. M., Iizuka T., Hill J. E. 2010; Characterization of two aerobic ultramicrobacteria isolated from urban soil and a description of Oxalicibacterium solurbis sp. nov.. FEMS Microbiol Lett 307:25–29 [View Article][PubMed]
    [Google Scholar]
  38. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  39. Schauer S., Kämpfer P., Wellner S., Spröer C., Kutschera U. 2011; Methylobacterium marchantiae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort. Int J Syst Evol Microbiol 61:870–876 [View Article][PubMed]
    [Google Scholar]
  40. Schwyn B., Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 [View Article][PubMed]
    [Google Scholar]
  41. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  43. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  44. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  45. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  46. Wellner S. A., Lodders N., Kämpfer P. 2012; Methylobacterium cerastii sp. nov., a novel species isolated from the leaf surface of Cerastium holosteoides . Int J Syst Evol Microbiol 62:917–924[PubMed] [CrossRef]
    [Google Scholar]
  47. Weon H. Y., Kim B. Y., Joa J. H., Son J. A., Song M. H., Kwon S. W., Go S. J., Yoon S. H. 2008; Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int J Syst Evol Microbiol 58:93–96 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033019-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033019-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error