1887

Abstract

A Gram-positive-staining, non-motile, rod- or coccoid-shaped actinobacterium, designated strain H17, was isolated from a soil sample from Nanjing, Jiangsu Province, PR China. The organism grew optimally at 30 °C, pH 7.0 and with 3 % NaCl (w/v). Strain H17 contained -Lys–-Asp as the cell-wall peptidoglycan type and galactose, xylose and mannose as the whole-cell sugars. The major fatty acids were anteiso-C and iso-C. The total polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phospholipids, phosphatidylinositol, phosphoglycolipid, one unidentified glycolipid and one unidentified lipid. The menaquinone was MK9(H). Mycolic acids were not detected. The DNA G+C content was 72.4 mol%. Phylogenetic analysis of this strain based on 16S rRNA gene sequences revealed 97.8–99.6 % similarity to recognized species of the genus . The low level of DNA–DNA relatedness to other species of the genus and the many phenotypic properties that distinguished strain H17 from recognized species of this genus demonstrated that isolate H17 should be classified as representing a novel species of the genus . The name sp. nov. is proposed for this novel species. The type strain is H17 ( = DSM 24300 = CCTCC AB 2011005).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 41071173)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033043-0
2012-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/971.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033043-0&mimeType=html&fmt=ahah

References

  1. Bakalidou A., Kämpfer P., Berchtold M., Kuhnigk T., Wenzel M., König H. 2002; Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis . Int J Syst Evol Microbiol 52:1185–1192 [View Article][PubMed]
    [Google Scholar]
  2. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  5. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. 1974; Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63 [View Article]
    [Google Scholar]
  6. Groth I., Schumann P., Schütze B., Gonzalez J. M., Laiz L., Saiz-Jimenez C., Stackebrandt E. 2005; Isoptericola hypogeus sp. nov., isolated from the Roman catacomb of Domitilla. Int J Syst Evol Microbiol 55:1715–1719 [View Article][PubMed]
    [Google Scholar]
  7. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradorhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  8. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67 [View Article]
    [Google Scholar]
  9. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  10. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  11. Minnikin D. E., Hutchinson G., Caldicott A. B., Goodfellow M. 1980; Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 188:221–233 [View Article]
    [Google Scholar]
  12. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156 [View Article]
    [Google Scholar]
  13. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  14. Stackebrandt E., Schumann P., Cui X. L. 2004; Reclassification of Cellulosimicrobium variabile Bakalidou et al. 2002 as Isoptericola variabilis gen. nov., comb. nov.. Int J Syst Evol Microbiol 54:685–688 [View Article][PubMed]
    [Google Scholar]
  15. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  16. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36 [View Article]
    [Google Scholar]
  17. Timke M., Wang-Lieu N. Q., Altendorf K., Lipski A. 2005; Community structure and diversity of biofilms from a beer bottling plant as revealed using 16S rRNA gene clone libraries. Appl Environ Microbiol 71:6446–6452 [View Article][PubMed]
    [Google Scholar]
  18. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  19. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  20. Tseng M., Liao H. C., Chiang W. P., Yuan G. F. 2011; Isoptericola chiayiensis sp. nov., isolated from mangrove soil. Int J Syst Evol Microbiol 61:1667–1670 [View Article][PubMed]
    [Google Scholar]
  21. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  22. Whiton R. S., Lau P., Morgan S. L., Gilbart J., Fox A. 1985; Modifications in the alditol acetate method for analysis of muramic acid and other neutral and amino sugars by capillary gas chromatography-mass spectrometry with selected ion monitoring. J Chromatogr A 347:109–120 [View Article]
    [Google Scholar]
  23. Wu Y., Li W. J., Tian W., Zhang L. P., Xu L., Shen Q. R., Shen B. 2010; Isoptericola jiangsuensis sp. nov., a chitin-degrading bacterium. Int J Syst Evol Microbiol 60:904–908 [View Article][PubMed]
    [Google Scholar]
  24. Yoon J. H., Schumann P., Kang S. J., Jung S. Y., Oh T. K. 2006; Isoptericola dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:2893–2897 [View Article][PubMed]
    [Google Scholar]
  25. Zhang Y. Q., Schumann P., Li W. J., Chen G. Z., Tian X. P., Stackebrandt E., Xu L. H., Jiang C. L. 2005; Isoptericola halotolerans sp. nov., a novel actinobacterium isolated from saline soil from Qinghai Province, north-west China. Int J Syst Evol Microbiol 55:1867–1870 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033043-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033043-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error