1887

Abstract

A Gram-negative, aerobic, motile, rod-shaped, antimony-resistant bacterium, designated strain SB22, was isolated from soil of Jixi coal mine, China. The major cellular fatty acids (>5 %) were Cω7 (63.5 %), summed feature 2 (C 3-OH and/or iso-C I, 10.8 %) and C (9.9 %). The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and an unknown aminolipid. The genomic DNA G+C content was 69.6 mol% and Q-10 was the major respiratory quinone. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain SB22 was most closely related to 5416T-32 (97.3 %), ACM 2042 (95.8 %) and 10-1-101 (92.9 %). The DNA–DNA hybridization value between strain SB22 and KACC 11604 ( = 5416T-32) was 43.3 %. On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics of strain SB22 and related species, it is considered that the isolate represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SB22 ( = CGMCC 1.10751 = KCTC 23364). An emended description of the genus is provided.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31010103903)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033746-0
2012-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/6/1271.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033746-0&mimeType=html&fmt=ahah

References

  1. An H., Zhang L., Tang Y., Luo X., Sun T., Li Y., Wang Y., Dai J., Fang C. 2009; Skermanella xinjiangensis sp. nov., isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 59:1531–1534 [View Article][PubMed]
    [Google Scholar]
  2. Ben Dekhil S., Cahill M., Stackebrandt E., Sly L. I. 1997; Transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subsp. parooensis to the new type species of Conglomeromonas, Conglomeromonas parooensis sp. nov.. Syst Appl Microbiol 20:72–77 [View Article]
    [Google Scholar]
  3. Berman J. 2003; Current treatment approaches to leishmaniasis. Curr Opin Infect Dis 16:397–401 [View Article][PubMed]
    [Google Scholar]
  4. Choi D. H., Hwang C. Y., Cho B. C. 2009; Pelagibius litoralis gen. nov., sp. nov., a marine bacterium in the family Rhodospirillaceae isolated from coastal seawater. Int J Syst Evol Microbiol 59:818–823 [View Article][PubMed]
    [Google Scholar]
  5. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  6. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  7. Díaz-Cárdenas C., Patel B. K. C., Baena S. 2010; Tistlia consotensis gen. nov., sp. nov., an aerobic, chemoheterotrophic, free-living, nitrogen-fixing alphaproteobacterium, isolated from a Colombian saline spring. Int J Syst Evol Microbiol 60:1437–1443 [View Article][PubMed]
    [Google Scholar]
  8. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485[PubMed]
    [Google Scholar]
  9. Eckert B., Weber O. B., Kirchhof G., Halbritter A., Stoffels M., Hartmann A. 2001; Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus . Int J Syst Evol Microbiol 51:17–26[PubMed]
    [Google Scholar]
  10. Fan H., Su C., Wang Y., Yao J., Zhao K., Wang Y., Wang G. 2008; Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, northwestern China. J Appl Microbiol 105:529–539 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  12. Guindon S., Lethiec F., Duroux P., Gascuel O. 2005; PHYML Online–a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33:Web Server issueW557–W559 [View Article][PubMed]
    [Google Scholar]
  13. Hinz K. H., Ryll M., Köhler B. 1998; Detection of acid production from carbohydrates by Riemerella anatipestifer and related organisms using the buffered single substrate test. Vet Microbiol 60:277–284 [View Article][PubMed]
    [Google Scholar]
  14. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article]
    [Google Scholar]
  15. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [View Article]
    [Google Scholar]
  16. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series vol. 20) pp. 173–199 Edited by Goodfellow M., Minnikin D. E. New York: Academic Press;
    [Google Scholar]
  17. Lai Q., Yuan J., Gu L., Shao Z. 2009a; Marispirillum indicum gen. nov., sp. nov., isolated from a deep-sea environment. Int J Syst Evol Microbiol 59:1278–1281 [View Article][PubMed]
    [Google Scholar]
  18. Lai Q., Yuan J., Wu C., Shao Z. 2009b; Oceanibaculum indicum gen. nov., sp. nov., isolated from deep seawater of the Indian Ocean. Int J Syst Evol Microbiol 59:1733–1737 [View Article][PubMed]
    [Google Scholar]
  19. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67 [View Article]
    [Google Scholar]
  20. Lim C. K., Cooksey D. A. 1993; Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae . J Bacteriol 175:4492–4498[PubMed]
    [Google Scholar]
  21. Liu Y., Jin J. H., Liu Y. H., Zhou Y. G., Liu Z. P. 2010; Dongia mobilis gen. nov., sp. nov., a new member of the family Rhodospirillaceae isolated from a sequencing batch reactor for treatment of malachite green effluent. Int J Syst Evol Microbiol 60:2780–2785 [View Article][PubMed]
    [Google Scholar]
  22. Liu M., Dai J., Liu Y., Cai F., Wang Y., Rahman E., Fang C. 2011; Desertibacter roseus gen. nov., sp. nov., a gamma radiation-resistant bacterium in the family Rhodospirillaceae, isolated from desert sand. Int J Syst Evol Microbiol 61:1109–1113 [View Article]
    [Google Scholar]
  23. Pfennig N., Trüper H. G. 1971; Higher taxa of the phototrophic bacteria. Int J Syst Bacteriol 21:17–18 [View Article]
    [Google Scholar]
  24. Rhoades K. R., Rimler R. B., Sandhu T. S. 1989; Pasteurellosis and pseudotuberculosis. In A Laboratory Manual for the Isolation and Identification of Avian Pathogens, 3rd edn. pp. 14–21 Edited by Purchase H. G., Arp L. H., Domermuth C. H., Pearson J. E. American Association of Avian Pathologists Dubuque, IA: Kendall/Hunt;
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  26. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc;
  27. Shotyk W., Krachler M., Chen B. 2005; Anthropogenic impacts on the biogeochemistry and cycling of antimony. Met Ions Biol Syst 44:171–203[PubMed]
    [Google Scholar]
  28. Skerman V. B. D., Sly L. I., Williamson M. L. 1983; Conglomeromonas largomobilis gen. nov., sp. nov., a sodium-sensitive, mixed-flagellated organism from fresh waters. Int J Syst Bacteriol 33:300–308 [View Article]
    [Google Scholar]
  29. Sly L. I., Stackebrandt E. 1999; Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum . Int J Syst Bacteriol 49:541–544 [View Article]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  32. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  34. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  35. Urios L., Michotey V., Intertaglia L., Lesongeur F., Lebaron P. 2008; Nisaea denitrificans gen. nov., sp. nov. and Nisaea nitritireducens sp. nov., two novel members of the class Alphaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol 58:2336–2341 [View Article][PubMed]
    [Google Scholar]
  36. Vásquez L., Scorza Dagert J. V., Scorza J. V., Vicuña-Fernández N., Petit de Peña Y., López S., Bendezú H., Rojas E., Vásquez L., Pérez B. 2006; Pharmacokinetics of experimental pentavalent antimony after intramuscular administration in adult volunteers. Curr Ther Res 67:193–203 [View Article]
    [Google Scholar]
  37. Wang Y. X., Liu J. H., Zhang X. X., Chen Y. G., Wang Z. G., Chen Y., Li Q. Y., Peng Q., Cui X. L. 2009; Fodinicurvata sediminis gen. nov., sp. nov. and Fodinicurvata fenggangensis sp. nov., poly-β-hydroxybutyrate-producing bacteria in the family Rhodospirillaceae . Int J Syst Evol Microbiol 59:2575–2581 [View Article][PubMed]
    [Google Scholar]
  38. Weeger W., Lièvremont D., Perret M., Lagarde F., Hubert J. C., Leroy M., Lett M. C. 1999; Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12:141–149 [View Article][PubMed]
    [Google Scholar]
  39. Weon H. Y., Kim B. Y., Hong S. B., Joa J. H., Nam S. S., Lee K. H., Kwon S. W. 2007; Skermanella aerolata sp. nov., isolated from air, and emended description of the genus Skermanella . Int J Syst Evol Microbiol 57:1539–1542 [View Article][PubMed]
    [Google Scholar]
  40. Xie C. H., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [View Article][PubMed]
    [Google Scholar]
  41. Ye Y., Sang J., Ma H., Tao G. 2010; Determination of antimony in environment samples by gas phase chemiluminescence detection following flow injection hydride generation and cryotrapping. Talanta 81:1502–1507 [View Article][PubMed]
    [Google Scholar]
  42. Zhang G. I., Hwang C. Y., Cho B. C. 2008; Thalassobaculum litoreum gen. nov., sp. nov., a member of the family Rhodospirillaceae isolated from coastal seawater. Int J Syst Evol Microbiol 58:479–485 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033746-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033746-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error