1887

Abstract

An extremely thermophilic, anaerobic, chemolithoautotrophic bacterium (strain S95) was isolated from a deep-sea hydrothermal vent chimney located on the Eastern Lau Spreading Center, Pacific Ocean, at a depth of 1910 m. Cells of strain S95 were oval to short Gram-negative rods, 0.5–0.6 µm in diameter and 1.0–1.5 µm in length, growing singly or in pairs. Cells were motile with a single polar flagellum. The temperature range for growth was 50–92 °C, with an optimum at 74 °C. The pH range for growth was 5.5–8.0, with an optimum at pH 7.0. Growth of strain S95 was observed at NaCl concentrations ranging from 1.5 to 3.5 % (w/v). Strain S95 grew anaerobically with elemental sulfur as an energy source and bicarbonate/CO as a carbon source. Elemental sulfur was disproportionated to sulfide and sulfate. Growth was enhanced in the presence of poorly crystalline iron(III) oxide (ferrihydrite) as a sulfide-scavenging agent. Strain S95 was also able to grow by disproportionation of thiosulfate and sulfite. Sulfate was not used as an electron acceptor. Analysis of the 16S rRNA gene sequence revealed that the isolate belongs to the phylum . On the basis of its physiological properties and results of phylogenetic analyses, it is proposed that the isolate represents the sole species of a new genus, gen. nov., sp. nov.; S95 ( = DSM 24515 = VKM B-2683) is the type strain of the type species. This is the first description of a thermophilic micro-organism that disproportionates elemental sulfur.

Funding
This study was supported by the:
  • Russian Foundation for Basic Research (Award 12-04-00789-a)
  • Russian Academy of Sciences
  • United States National Science Foundation (Award OCE-0937404 and OCE-0728391)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034397-0
2012-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/11/2565.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034397-0&mimeType=html&fmt=ahah

References

  1. Alain K., Postec A., Grinsard E., Lesongeur F., Prieur D., Godfroy A. 2010; Thermodesulfatator atlanticus sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 60:33–38 [View Article][PubMed]
    [Google Scholar]
  2. Bak F., Cypionka H. 1987; A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature 326:891–892 [View Article][PubMed]
    [Google Scholar]
  3. Bak F., Pfennig N. 1987; Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189 [View Article]
    [Google Scholar]
  4. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  5. DeSantis T. Z. Jr, Hugenholtz P., Keller K., Brodie E. L., Larsen N., Piceno Y. M., Phan R., Andersen G. L. 2006a; NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:Web Server issueW394–W399 [View Article][PubMed]
    [Google Scholar]
  6. DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L. 2006b; Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072 [View Article][PubMed]
    [Google Scholar]
  7. Flores G. E., Campbell J. H., Kirshtein J. D., Meneghin J., Podar M., Steinberg J. I., Seewald J. S., Tivey M. K., Voytek M. A. et al. 2011; Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environ Microbiol 13:2158–2171 [View Article][PubMed]
    [Google Scholar]
  8. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98 NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  9. Jackson B. E., McInerney M. J. 2000; Thiosulfate disproportionation by Desulfotomaculum thermobenzoicum . Appl Environ Microbiol 66:3650–3653 [View Article][PubMed]
    [Google Scholar]
  10. Jannasch H. W. 1984; Microbial processes at deep-sea hydrothermal vents. In Hydrothermal Processes at Sea Floor Spreading Centers pp. 677–709 Edited by Rona P. A., Bostrom L., Laubier L., Smith K. L. New York: Plenum Press;
    [Google Scholar]
  11. Janssen P. H., Schuhmann A., Bak F., Liesack W. 1996; Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov.. Arch Microbiol 166:184–192 [View Article]
    [Google Scholar]
  12. Jeanthon C., L’Haridon S., Cueff V., Banta A., Reysenbach A.-L., Prieur D. 2002; Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium . Int J Syst Evol Microbiol 52:765–772 [View Article][PubMed]
    [Google Scholar]
  13. Kashefi K., Holmes D. E., Reysenbach A.-L., Lovley D. R. 2002; Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov.. Appl Environ Microbiol 68:1735–1742 [View Article][PubMed]
    [Google Scholar]
  14. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. New York: John Wiley & Sons;
    [Google Scholar]
  15. Langworthy T. A., Hölzer G., Zeikus J. G., Tornabene T. G. 1983; Iso- and anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfotobacterium commune . Syst Appl Microbiol 4:1–17 [View Article]
    [Google Scholar]
  16. Lovley D. R., Phillips E. J. P. 1994; Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl Environ Microbiol 60:2394–2399[PubMed]
    [Google Scholar]
  17. Miroshnichenko M. L., Lebedinsky A. V., Chernyh N. A., Tourova T. P., Kolganova T. V., Spring S., Bonch-Osmolovskaya E. A. 2009; Caldimicrobium rimae gen. nov., sp. nov., an extremely thermophilic, facultatively lithoautotrophic, anaerobic bacterium from the Uzon Caldera, Kamchatka. Int J Syst Evol Microbiol 59:1040–1044 [View Article][PubMed]
    [Google Scholar]
  18. Moussard H., L’Haridon S., Tindall B. J., Banta A., Schumann P., Stackebrandt E., Reysenbach A.-L., Jeanthon C. 2004; Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227–233 [View Article][PubMed]
    [Google Scholar]
  19. Philippot P., Van Zuilen M., Lepot K., Thomazo C., Farquhar J., Van Kranendonk M. J. 2007; Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537 [View Article][PubMed]
    [Google Scholar]
  20. Pikuta E. V., Hoover R. B., Bej A. K., Marsic D., Whitman W. B., Cleland D., Krader P. 2003; Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 53:1327–1332 [View Article][PubMed]
    [Google Scholar]
  21. Rozanova E. P., Khudyakova A. I. 1974; A new nonsporing thermophilic sulphate-reducing organism, Desulfovibrio thermophilus nov. sp.. Microbiology (English translation of Microbiologiia) 43:908–912[PubMed]
    [Google Scholar]
  22. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc;
    [Google Scholar]
  23. Slobodkin A. I., Tourova T. P., Kuznetsov B. B., Kostrikina N. A., Chernyh N. A., Bonch-Osmolovskaya E. A. 1999; Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 49:1471–1478 [View Article][PubMed]
    [Google Scholar]
  24. Sonne-Hansen J., Ahring B. K. 1999; Thermodesulfobacterium hveragerdense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulfate reducing bacteria isolated from a Icelandic hot spring. Syst Appl Microbiol 22:559–564 [View Article][PubMed]
    [Google Scholar]
  25. Sorokin D. Y., Tourova T. P., Henstra A. M., Stams A. J. M., Galinski E. A., Muyzer G. 2008; Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov. - a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology 154:1444–1453 [View Article][PubMed]
    [Google Scholar]
  26. Sorokin D. Y., Tourova T. P., Kolganova T. V., Detkova E. N., Galinski E. A., Muyzer G. 2011; Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov.. Extremophiles 15:391–401 [View Article][PubMed]
    [Google Scholar]
  27. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526[PubMed]
    [Google Scholar]
  28. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  29. Thamdrup B., Finster K., Hansen J. W., Bak F. 1993; Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59:101–108[PubMed]
    [Google Scholar]
  30. Trüper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii . Antonie van Leeuwenhoek 30:225–238 [View Article]
    [Google Scholar]
  31. Wacey D., Kilburn M. R., Saunders M., Cliff J., Brasier M. D. 2011; Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat Geosci 4:698–702 [View Article]
    [Google Scholar]
  32. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886[PubMed]
    [Google Scholar]
  33. Zeikus J. G., Dawson M. A., Thompson T. E., Ingvorsent K., Hatchikian E. C. 1983; Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov.. J Gen Microbiol 129:1159–1169 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034397-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034397-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error