1887

Abstract

A yellowish pigmented, Gram-negative, rod-shaped, non-spore-forming bacterium (strain CC-TBT-3), was isolated on marine agar 2216 from a coastal hot spring of Green Island (Lutao), located off Taituang, Taiwan. 16S rRNA gene sequence analysis of strain CC-TBT-3 showed a relatively low similarity (<95.5 %) to representatives of the genera , and of the , with the most related strain being the type strain of . In addition to the relatively low 16S rRNA gene sequence similarity to members of established species, the isolate also showed some unique chemotaxonomic features, including the presence of some glycolipids with unusual chromatographic behaviour. The major components of the polar lipid profile were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and three unidentified glycolipids. The major respiratory quinone was ubiquinone Q-10. The polyamine pattern was characterized by the triamine -homospermidine as a major component. Although the predominant fatty acids were Cω7 and summed feature 3 (Cω7 and/or iso-C 2-OH), the isolate did not show the typical hydroxyl fatty acids, such as C 2-OH, C 2-OH and C 2-OH, found in members of the genera , and , but showed instead high amounts of C 2-OH (12.0 %). The DNA G+C content of strain CC-TBT-3 was 63.4 mol%. 16S rRNA gene sequence, chemotaxonomic and physiological analyses revealed that strain CC-TBT-3 represents a novel species in a new genus in the family for which the name gen. nov., sp. nov. is proposed; the type strain is of the type species , CC-TBT-3 ( = DSM 24194 = CCM 7794).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034413-0
2012-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/6/1326.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034413-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [View Article]
    [Google Scholar]
  2. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal DNA operon from Escherichia coli . J Mol Biol 148:107–127 [View Article]
    [Google Scholar]
  3. Busse H.-J., Auling G. 1988; Polyamine patterns as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [View Article]
    [Google Scholar]
  4. Busse H.-J., Kämpfer P., Denner E. B. M. 1999; Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [View Article][PubMed]
    [Google Scholar]
  5. Geueke B., Busse H.-J., Fleischmann T., Kämpfer P., Kohler H.-P. E. 2007; Description of Sphingosinicella xenopeptidilytica sp. nov., a β-peptide-degrading species, and emended descriptions of the genus Sphingosinicella and the species Sphingosinicella microcystinivorans . Int J Syst Evol Microbiol 57:107–113 [View Article][PubMed]
    [Google Scholar]
  6. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  7. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [View Article]
    [Google Scholar]
  8. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [View Article][PubMed]
    [Google Scholar]
  9. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  10. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  11. Maruyama T., Park H. D., Ozawa K., Tanaka Y., Sumino T., Hamana K., Hiraishi A., Kato K. 2006; Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56:85–89 [View Article][PubMed]
    [Google Scholar]
  12. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [View Article]
    [Google Scholar]
  13. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . Nucleic Acids Res 35:7188–7196 [View Article][PubMed]
    [Google Scholar]
  14. Stolz A., Busse H.-J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:572–576 [View Article][PubMed]
    [Google Scholar]
  15. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417[PubMed]
    [Google Scholar]
  16. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  17. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  18. Urdiain M., López-López A., Gonzalo C., Busse H.-J., Langer S., Kämpfer P., Rosselló-Móra R. 2008; Reclassification of Rhodobium marinum and Rhodobium pfennigii as Afifella marina gen. nov. comb. nov. and Afifella pfennigii comb. nov., a new genus of photoheterotrophic Alphaproteobacteria and emended descriptions of Rhodobium, Rhodobium orientis and Rhodobium gokarnense . Syst Appl Microbiol 31:339–351 [View Article][PubMed]
    [Google Scholar]
  19. Wittich R. M., Busse H. J., Kämpfer P., Macedo A. J., Tiirola M., Wieser M., Abraham W. R. 2007; Sphingomonas fennica sp. nov. and Sphingomonas haloaromaticamans sp. nov., outliers of the genus Sphingomonas. . Int J Syst Evol Microbiol 57:1740–1746 [View Article][PubMed]
    [Google Scholar]
  20. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. . Microbiol Immunol 34:99–119[PubMed] [CrossRef]
    [Google Scholar]
  21. Yabuuchi E., Kosako Y., Naka T., Suzuki S., Yano I. 1999; Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas. . Microbiol Immunol 43:339–349[PubMed] [CrossRef]
    [Google Scholar]
  22. Zhang D.-C., Busse H.-J., Liu H.-C., Zhou Y.-G., Schinner F., Margesin R. 2011; Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 61:587–591 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034413-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034413-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error