1887

Abstract

A Gram-staining-positive, heterotrophic, aerobic, non-motile, non-endospore-forming, yellow-coloured rod, designated strain N5, was isolated from a soil sample collected at an industrial waste site in Noida, on the outskirts of Delhi, India. In phylogenetic analyses based on 16S rRNA gene sequences, strain N5 was most closely related to members of established species in the genus (with sequence similarities of approximately 94.0–97.6 %), particularly LMG 23459 (97.59 %) and LMG 19263 (97.18 %). In DNA–DNA hybridization studies, however, none of the DNA–DNA relatedness values between strain N5 and members of the genus exceeded 11.3 %. The genomic DNA G+C content of the novel strain was 68 mol%. The chemotaxonomic characteristics of strain N5, which had MK-11 and MK-10 as its major menaquinones and anteiso-C (45 %), anteiso-C (37 %), iso-C (8.5 %) and C (4.5 %) as its predominant fatty acids, were consistent with classification in the genus . Peptidoglycan in the novel strain, which contained ornithine, alanine, glycine, homoserine, glutamic acid, 3-hydroxyglutamic acid, muramic acid and traces of -glycolyl residues, was of type B2β. The polar lipid profile of strain N5 comprised diphosphatidylglycerol, phosphatidylglycerol and an unknown glycolipid. The novel strain’s major cell-wall sugars were glucose and galactose. Based on the phylogenetic, DNA–DNA hybridization, chemotaxonomic and phenotypic data, strain N5 represents a novel species within the genus for which the name sp. nov. is proposed; the type strain is N5 ( = DSM 24221 = CCM 7881).

Funding
This study was supported by the:
  • University of Delhi’s Department of Science and Technology
  • Government of India’s Department of Biotechnology
  • Indian National Bureau of Agriculturally Important Micro-organisms
  • Promotion of University Research and Scientific Excellence grant
  • Government of India’s Council of Scientific and Industrial Research and Department of Biotechnology
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034439-0
2012-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/9/2114.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034439-0&mimeType=html&fmt=ahah

References

  1. Arden-Jones M. P., McCarthy A. J., Cross T. 1979; Taxonomic and serologic studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. J Gen Microbiol 115:343–354[PubMed] [CrossRef]
    [Google Scholar]
  2. Bakir M. A., Kudo T., Benno Y. 2008; Microbacterium hatanonis sp. nov., isolated as a contaminant of hairspray. Int J Syst Evol Microbiol 58:654–658 [View Article][PubMed]
    [Google Scholar]
  3. Behrendt U., Schumann P., Hamada M., Suzuki K.-i., Spröer C., Ulrich A. 2011; Reclassification of Leifsonia ginsengi (Qiu et al. 2007) as Herbiconiux ginsengi gen. nov., comb. nov. and description of Herbiconiux solani sp. nov., an actinobacterium associated with the phyllosphere of Solanum tuberosum L.. Int J Syst Evol Microbiol 61:1039–1047 [View Article][PubMed]
    [Google Scholar]
  4. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [View Article][PubMed]
    [Google Scholar]
  5. Brennan N. M., Brown R., Goodfellow M., Ward A. C., Beresford T. P., Vancanneyt M., Cogan T. M., Fox P. F. 2001; Microbacterium gubbeenense sp. nov., from the surface of a smear-ripened cheese. Int J Syst Evol Microbiol 51:1969–1976 [View Article][PubMed]
    [Google Scholar]
  6. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  7. Collins M. D., Bradbury J. F. 1992; The genera Agromyces, Aureobacterium, Clavibacter, Curtobacterium, and Microbacterium . In The Prokaryotes, 2nd edn. pp. 1355–1368 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  8. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  9. Collins M. D., Jones D., Kroppenstedt R. M. 1983; Reclassification of Brevibacterium imperiale (Steinhaus) and “Corynebacterium laevaniformans” (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov.. Syst Appl Microbiol 4:65–78 [View Article]
    [Google Scholar]
  10. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  11. Evtushenko L. I., Takeuchi M. 2006; The family Microbacteriaceae . In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn. vol. 3 pp. 1020–1098 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  12. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  13. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  14. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773 [View Article][PubMed]
    [Google Scholar]
  15. Jukes T., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  16. Kumar M., Verma M., Lal R. 2008; Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol 58:861–865 [View Article][PubMed]
    [Google Scholar]
  17. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  18. Lal D., Gupta S. K., Schumann P., Lal R. 2010; Microbacterium lindanitolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 60:2634–2638 [View Article][PubMed]
    [Google Scholar]
  19. Lechevalier M. P. 1968; Identification of aerobic actinomycetes of clinical importance. J Lab Clin Med 71:934–944[PubMed]
    [Google Scholar]
  20. Lee J. S., Lee K. C., Park Y. H. 2006; Microbacterium koreense sp. nov., from sea water in the South Sea of Korea. Int J Syst Evol Microbiol 56:423–427 [View Article][PubMed]
    [Google Scholar]
  21. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160[PubMed]
    [Google Scholar]
  22. McCarthy A. J., Cross T. 1984; A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 130:5–25
    [Google Scholar]
  23. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  24. Orla-Jensen S. 1919 The Lactic Acid Bacteria Copenhagen: Høst & Sons;
    [Google Scholar]
  25. Park M. J., Kim M. K., Kim H. B., Im W. T., Yi T. H., Kim S. Y., Soung N. K., Yang D. C. 2008; Microbacterium ginsengisoli sp. nov., a β-glucosidase-producing bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 58:429–433 [View Article][PubMed]
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  29. Shivaji S., Bhadra B., Rao R. S., Chaturvedi P., Pindi P. K., Raghukumar C. 2007; Microbacterium indicum sp. nov., isolated from a deep-sea sediment sample from the Chagos Trench, Indian Ocean. Int J Syst Evol Microbiol 57:1819–1822 [View Article][PubMed]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Takahashi K., Nei M. 2000; Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol 17:1251–1258 [View Article][PubMed]
    [Google Scholar]
  32. Takeuchi M., Hatano K. 1998a; Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium . Int J Syst Bacteriol 48:739–747 [View Article][PubMed]
    [Google Scholar]
  33. Takeuchi M., Hatano K. 1998b; Proposal of six new species in the genus Microbacterium and transfer of Flavobacterium marinotypicum ZoBell and Upham to the genus Microbacterium as Microbacterium maritypicum comb. nov.. Int J Syst Bacteriol 48:973–982 [View Article][PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  35. Tourova T. P., Antonov A. S. 1988; Identification of microorganisms by rapid DNA - DNA hybridization. Meth Microbiol 19:333–355 [View Article]
    [Google Scholar]
  36. Uchida K., Aida K. 1984; An improved method for the glycolate test for simple identification of acyl type of bacterial cell walls. J Gen Appl Microbiol 30:131–134 [View Article]
    [Google Scholar]
  37. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  38. Young C. C., Busse H. J., Langer S., Chu J. N., Schumann P., Arun A. B., Shen F. T., Rekha P. D., Kämpfer P. 2010; Microbacterium agarici sp. nov., Microbacterium humi sp. nov. and Microbacterium pseudoresistens sp. nov., isolated from the base of the mushroom Agaricus blazei . Int J Syst Evol Microbiol 60:854–860 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034439-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034439-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error