1887

Abstract

Two strains of subdivision 1 , a pink-pigmented bacterium KA1 and a colourless isolate WH120, were obtained from acidic peat and wood under decay by the white-rot fungus , respectively. Cells of these isolates were Gram-negative-staining, non-motile, short rods, which were covered by large polysaccharide capsules and occurred singly, in pairs, or in short chains. Strains KA1 and WH120 were strictly aerobic mesophiles that grew between 10 and 33 °C, with an optimum at 22–28 °C. Both isolates developed under acidic conditions, but strain WH120 was more acidophilic (pH growth range 3.5–6.4; optimum, 4.0–4.5) than strain KA1 (pH growth range 3.5–7.3; optimum , 5.0–5.5). The preferred growth substrates were sugars. In addition, the wood-derived isolate WH120 grew on oxalate, lactate and xylan, while the peat-inhabiting acidobacterium strain KA1 utilized galacturonate, glucuronate and pectin. The major fatty acids were iso-C and iso-Cω8; the cells also contained significant amounts of 13,16-dimethyl octacosanedioic acid. The quinone was MK-8. The DNA G+C contents of strains KA1 and WH120 were 54.1 and 51.7 mol%, respectively. Strains KA1 and WH120 displayed 97.8 % 16S rRNA gene sequence similarity to each other. The closest recognized relatives were and (93.4–94.3 % 16S rRNA gene sequence similarity). These species differed from strains KA1 and WH120 by their ability to grow under anoxic conditions, the absence of capsules, presence of cell motility and differing fatty acid composition. Based on these differences, the two new isolates are proposed as representing a novel genus, gen. nov., and two novel species. gen. nov., sp. nov. is the type species for the new genus with strain KA1 ( = DSM 23886 = LMG 25897 = VKM B-2678) as the type strain. The name sp. nov. is proposed for strain WH120 ( = LMG 26244 = VKM B-2677 = NCCB 100371).

Funding
This study was supported by the:
  • Russian Academy of Sciences
  • RosNauka (Award 02.740.11.0023)
  • Russian Fund of Basic Research (Award 09-04-00004)
  • Institutional Research Concept of the Institute of Microbiology ASCR (Award AV0Z50200510)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034819-0
2012-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1512.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034819-0&mimeType=html&fmt=ahah

References

  1. Barns S. M., Takala S. L., Kuske C. R. 1999; Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737[PubMed]
    [Google Scholar]
  2. Blöthe M., Akob D. M., Kostka J. E., Göschel K., Drake H. L., Küsel K. 2008; pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments. Appl Environ Microbiol 74:1019–1029 [View Article][PubMed]
    [Google Scholar]
  3. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:329–366 [View Article]
    [Google Scholar]
  4. de Jong E., Field J. A. 1997; Sulfur tuft and turkey tail: biosynthesis and biodegradation of organohalogens by Basidiomycetes. Annu Rev Microbiol 51:375–414 [View Article][PubMed]
    [Google Scholar]
  5. Dedysh S. N., Pankratov T. A., Belova S. E., Kulichevskaya I. S., Liesack W. 2006; Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol 72:2110–2117 [View Article][PubMed]
    [Google Scholar]
  6. Dedysh S. N., Kulichevskaya I. S., Serkebaeva Y. M., Mityaeva M. A., Sorokin V. V., Suzina N. E., Rijpstra W. I. C., Sinninghe Damsté J. S. 2012; Bryocella elongata gen. nov., sp. nov., a member of subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al. 2008. Int J Syst Evol Microbiol 62:654–664[PubMed] [CrossRef]
    [Google Scholar]
  7. Eichorst S. A., Breznak J. A., Schmidt T. M. 2007; Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria . Appl Environ Microbiol 73:2708–2717 [View Article][PubMed]
    [Google Scholar]
  8. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  9. Gerhardt P. 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Hugenholtz P., Goebel B. M., Pace N. R. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774[PubMed]
    [Google Scholar]
  11. Janssen P. H. 2006; Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728 [CrossRef]
    [Google Scholar]
  12. Kishimoto N., Kosako Y., Tano T. 1991; Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22:1–7 [View Article]
    [Google Scholar]
  13. Koch I. H., Gich F., Dunfield P. F., Overmann J. 2008; Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol 58:1114–1122 [View Article][PubMed]
    [Google Scholar]
  14. Kulichevskaya I. S., Ivanova A. O., Belova S. E., Baulina O. I., Bodelier P. L. E., Rijpstra W. I. C., Sinninghe Damsté J. S., Zavarzin G. A., Dedysh S. N. 2007; Schlesneria paludicola gen. nov., sp. nov., the first acidophilic member of the order Planctomycetales, from Sphagnum-dominated boreal wetlands. Int J Syst Evol Microbiol 57:2680–2687 [View Article][PubMed]
    [Google Scholar]
  15. Kulichevskaya I. S., Suzina N. E., Liesack W., Dedysh S. N. 2010; Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria . Int J Syst Evol Microbiol 60:301–306 [View Article][PubMed]
    [Google Scholar]
  16. Lauber C. L., Hamady M., Knight R., Fierer N. 2009; Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120 [View Article][PubMed]
    [Google Scholar]
  17. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  18. Luft J. H. 1964; Electron microscopy of cell extraneous coats as revealed by ruthenium red staining. J Cell Biol 23:54A–55A
    [Google Scholar]
  19. Männistö M. K., Rawat S., Starovoytov V., Häggblom M. M. 2011; Terriglobus saanensis sp. nov., an Acidobacterium isolated from tundra soil. Int J Syst Evol Microbiol 61:1823–1828 [View Article][PubMed]
    [Google Scholar]
  20. Owen R. J., Hill L. R., Lapage S. P. 1969; Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7:503–516 [View Article][PubMed]
    [Google Scholar]
  21. Pankratov T. A., Dedysh S. N. 2010; Granulicella paludicola gen. nov., sp. nov., G. pectinivorans sp. nov., G. aggregans sp. nov. and G. rosea sp. nov., novel acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Microbiol 60:2951–2959 [View Article][PubMed]
    [Google Scholar]
  22. Pankratov T. A., Kirsanova L. A., Kaparullina E. N., Kevbrin V. V., Dedysh S. N. 2012; Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. Int J Syst Evol Microbiol 62:430–437[PubMed] [CrossRef]
    [Google Scholar]
  23. Sait M., Davis K. E. R., Janssen P. H. 2006; Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbiol 72:1852–1857 [View Article][PubMed]
    [Google Scholar]
  24. Sinninghe Damsté J. S., Rijpstra W. I. C., Hopmans E. C., Weijers J. W. H., Foesel B. U., Overmann J., Dedysh S. N. 2011; 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol 77:4147–4154 [View Article][PubMed]
    [Google Scholar]
  25. Sturt H. F., Summons R. E., Smith K., Elvert M., Hinrichs K.-U. 2004; Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry – new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom 18:617–628 [View Article][PubMed]
    [Google Scholar]
  26. Valášková V., de Boer W., Klein Gunnewiek P. J. A., Pospíšek M., Baldrian P. 2009; Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J 3:1218–1221 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034819-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034819-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error