1887

Abstract

A pink-pigmented, facultatively methylotrophic bacterium, strain 23e, was isolated from the leaves of (cudweed). The cells of strain 23e were Gram-reaction negative, motile and non-spore-forming rods. On the basis of 16S rRNA gene sequence similarities, strain 23e was related to ATCC 27886 (97.1 %) and JT1 (97 %), and the phylogenetic similarities to all other species with validly published names were less than 97 %. Major cellular fatty acids were Cω7, C and C. The results of DNA–DNA hybridization, phylogenetic analyses based on 16S rRNA and gene sequences, fatty acid profiles, whole-cell matrix-assisted laser desorption/ionization time of flight/MS analysis, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 23e from the phylogenetically closest relatives. We propose that strain 23e represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is 23e ( = DSM 24027 = NBRC 107716).

Funding
This study was supported by the:
  • Japan Science and Technology Agency
  • SEKISUI CHEMICAL
  • Institute of Fermentation, Osaka (IFO)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.037713-0
2012-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/11/2602.html?itemId=/content/journal/ijsem/10.1099/ijs.0.037713-0&mimeType=html&fmt=ahah

References

  1. Aslam Z., Lee C. S., Kim K. H., Im W. T., Ten L. N., Lee S. T. 2007; Methylobacterium jeotgali sp. nov., a non-pigmented, facultatively methylotrophic bacterium isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 57:566–571 [View Article][PubMed]
    [Google Scholar]
  2. Cao Y. R., Wang Q., Jin R. X., Tang S. K., Jiang Y., He W. X., Lai H. X., Xu L. H., Jiang C. L. 2011; Methylobacterium soli sp. nov. a methanol-utilizing bacterium isolated from the forest soil. Antonie van Leeuwenhoek 99:629–634 [View Article][PubMed]
    [Google Scholar]
  3. Choi O., Kim J., Kim J. G., Jeong Y., Moon J. S., Park C. S., Hwang I. 2008; Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 146:657–668 [View Article][PubMed]
    [Google Scholar]
  4. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  5. Delmotte N., Knief C., Chaffron S., Innerebner G., Roschitzki B., Schlapbach R., von Mering C., Vorholt J. A. 2009; Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433 [View Article][PubMed]
    [Google Scholar]
  6. Doronina N. V., Trotsenko Y. A., Tourova T. P., Kuznetsov B. B., Leisinger T. 2000; Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. – novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst Appl Microbiol 23:210–218 [View Article][PubMed]
    [Google Scholar]
  7. Doronina N. V., Trotsenko Y. A., Kuznetsov B. B., Tourova T. P., Salkinoja-Salonen M. S. 2002; Methylobacterium suomiense sp. nov. and Methylobacterium lusitanum sp. nov., aerobic, pink-pigmented, facultatively methylotrophic bacteria. Int J Syst Evol Microbiol 52:773–776 [View Article][PubMed]
    [Google Scholar]
  8. Duine J. A., Frank J. 1990; The role of PQQ and quinoproteins in methylotrophic bacteria. FEMS Microbiol Rev 87:221–226 [View Article]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies – an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  11. Glickmann E., Dessaux Y. 1995; A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796[PubMed]
    [Google Scholar]
  12. Green P. N. 1992; The genus Methylobacterium . In The Prokaryotes, 2nd edn. pp. 2342–2349 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  13. Green P. N., Bousfield I. J., Hood D. 1988; Three new Methylobacterium species: M. rhodesianum sp. nov., M. zatmanii sp. nov., and M. fujisawaense sp. nov. Int J Syst Bacteriol 38:124–127 [CrossRef]
    [Google Scholar]
  14. Hill J. E., Penny S. L., Crowell K. G., Goh S. H., Hemmingsen S. M. 2004; cpnDB: a chaperonin sequence database. Genome Res 14:1669–1675 [View Article][PubMed]
    [Google Scholar]
  15. Hoppe T., Peters K., Schmidt F. 2011; Methylobacterium bullatum sp. nov., a methylotrophic bacterium isolated from Funaria hygrometrica . Syst Appl Microbiol 34:482–486 [View Article][PubMed]
    [Google Scholar]
  16. Idris R., Kuffner M., Bodrossy L., Puschenreiter M., Monchy S., Wenzel W. W., Sessitsch A. 2006; Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov.. Syst Appl Microbiol 29:634–644 [View Article][PubMed]
    [Google Scholar]
  17. Kang Y.-S., Kim J., Shin H.-D., Nam Y.-D., Bae J.-W., Jeon C. O., Park W. 2007; Methylobacterium platani sp. nov., isolated from a leaf of the tree Platanus orientalis . Int J Syst Evol Microbiol 57:2849–2853 [View Article][PubMed]
    [Google Scholar]
  18. Kato Y., Asahara M., Arai D., Goto K., Yokota A. 2005; Reclassification of Methylobacterium chloromethanicum and Methylobacterium dichloromethanicum as later subjective synonyms of Methylobacterium extorquens and of Methylobacterium lusitanum as a later subjective synonym of Methylobacterium rhodesianum . J Gen Appl Microbiol 51:287–299 [View Article][PubMed]
    [Google Scholar]
  19. Kato Y., Asahara M., Goto K., Kasai H., Yokota A. 2008; Methylobacterium persicinum sp. nov., Methylobacterium komagatae sp. nov., Methylobacterium brachiatum sp. nov., Methylobacterium tardum sp. nov. and Methylobacterium gregans sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 58:1134–1141 [CrossRef]
    [Google Scholar]
  20. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  21. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradorhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  22. Lane D. J. 1991; 16S/23S sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  23. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; clustal w and clustal_x version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  24. Lee S. W., Oh H. W., Lee K. H., Ahn T. Y. 2009; Methylobacterium dankookense sp. nov., isolated from drinking water. J Microbiol 47:716–720 [View Article][PubMed]
    [Google Scholar]
  25. Madhaiyan M., Poonguzhali S., Kwon S.-W., Sa T.-M. 2009; Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice. Int J Syst Evol Microbiol 59:22–27 [View Article][PubMed]
    [Google Scholar]
  26. Madhaiyan M., Poonguzhali S., Senthilkumar M., Lee J. S., Lee K. C. 2012; Methylobacterium gossipiicola sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the cotton phyllosphere. Int J Syst Evol Microbiol 62:162–167 [View Article][PubMed]
    [Google Scholar]
  27. McDonald I. R., Doronina N. V., Trotsenko Y. A., McAnulla C., Murrell J. C. 2001; Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. Int J Syst Evol Microbiol 51:119–122[PubMed]
    [Google Scholar]
  28. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  29. Myers E. W., Miller W. 1988; Optimal alignments in linear space. Comput Appl Biosci 4:11–17[PubMed]
    [Google Scholar]
  30. Nei M., Kumar S. 2000 Molecular Evolution and Phylogenetics New York: Oxford University Press;
    [Google Scholar]
  31. Sahin N. 2011; Significance of absorption spectra for the chemotaxonomic characterization of pigmented bacteria. Turk J Biol 35:167–175
    [Google Scholar]
  32. Sahin N., Kato Y., Yilmaz F. 2008; Taxonomy of oxalotrophic Methylobacterium strains. Naturwissenschaften 95:931–938 [View Article][PubMed]
    [Google Scholar]
  33. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  34. Schauer S., Kämpfer P., Wellner S., Spröer C., Kutschera U. 2011; Methylobacterium marchantiae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort. Int J Syst Evol Microbiol 61:870–876 [View Article][PubMed]
    [Google Scholar]
  35. Schwyn B., Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 [View Article][PubMed]
    [Google Scholar]
  36. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  38. Tani A., Sahin N., Kimbara K. 2012; Methylobacterium oxalidis sp. nov., isolated from leaves of Oxalis corniculata . Int J Syst Evol Microbiol 62:1647–1652 [View Article][PubMed]
    [Google Scholar]
  39. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  40. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  41. Urakami T., Yashima K., Kobayashi H., Yoshida A., Ito-Yoshida C. 1992; Production of pyrroloquinoline quinone by using methanol-utilizing bacteria. Appl Environ Microbiol 58:3970–3976[PubMed]
    [Google Scholar]
  42. Urakami T., Araki H., Suzuki K.-I., Komagata K. 1993; Further studies of the genus Methylobacterium and description of Methylobacterium aminovorans sp. nov.. Int J Syst Bacteriol 43:504–513 [View Article]
    [Google Scholar]
  43. Wellner S. A., Lodders N., Kämpfer P. 2012; Methylobacterium cerastii sp. nov., isolated from the leaf surface of Cerastium holosteoides . Int J Syst Evol Microbiol 62:917–924 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.037713-0
Loading
/content/journal/ijsem/10.1099/ijs.0.037713-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error