1887

Abstract

A bacterial strain, designated NS31-3, was isolated from the wastewater of a paper mill. Cells of the isolate were obligately anaerobic, non-pigmented, non-motile, Gram-negative, short rods (0.7–1.0×1.4–2.5 µm). The isolate was able to grow on media containing 20 % bile salts. API 20A tests showed that acid was produced from glucose, lactose, sucrose, maltose, -xylose, -arabinose, cellobiose, -mannose, -melezitose, -raffinose, -trehalose, -mannitol, salicin and -sorbitol. The main fermentation products from PYG broth were lactic acid, propionic acid, formic acid and acetic acid. Chemotaxonomic analysis showed that the major fatty acids were anteiso-C, C and iso-C 3-OH and the predominant respiratory quinones were MK-9 and MK-10. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain NS31-3 was related to members of genus (91.2–93.2 % sequence similarity); the isolate had the closest affinity with JCM 9497. The G+C content of the genomic DNA was 37.2 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic analysis, strain NS31-3 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is NS31-3 ( = JCM 17797  = DSM 24967).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 30970002)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038000-0
2012-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/11/2613.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038000-0&mimeType=html&fmt=ahah

References

  1. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328[PubMed]
    [Google Scholar]
  2. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  3. Eggerth A. H., Gagnon B. H. 1933; The bacteroides of human feces. J Bacteriol 25:389–413[PubMed]
    [Google Scholar]
  4. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132 [View Article]
    [Google Scholar]
  6. Johnson J. L., Moore W. E. C., Moore L. V. H. 1986; Bacteroides caccae sp. nov., Bacteroides merdae sp. nov., and Bacteroides stercoris sp. nov. isolated from human feces. Int J Syst Bacteriol 36:499–501 [View Article]
    [Google Scholar]
  7. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  8. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  9. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  10. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov.. Int J Syst Bacteriol 46:1088–1092 [View Article][PubMed]
    [Google Scholar]
  11. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  12. Sakamoto M., Benno Y. 2006; Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov.. Int J Syst Evol Microbiol 56:1599–1605 [View Article][PubMed]
    [Google Scholar]
  13. Sakamoto M., Kitahara M., Benno Y. 2007; Parabacteroides johnsonii sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57:293–296 [View Article][PubMed]
    [Google Scholar]
  14. Sakamoto M., Suzuki N., Matsunaga N., Koshihara K., Seki M., Komiya H., Benno Y. 2009; Parabacteroides gordonii sp. nov., isolated from human blood cultures. Int J Syst Evol Microbiol 59:2843–2847 [View Article][PubMed]
    [Google Scholar]
  15. Shah H. N. 1992; The genus Bacteroides and related taxa. In The Prokaryotes, 2nd edn. vol. 4 pp. 3593–3607 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer; [CrossRef]
    [Google Scholar]
  16. Simmon K. E., Mirrett S., Reller L. B., Petti C. A. 2008; Genotypic diversity of anaerobic isolates from bloodstream infections. J Clin Microbiol 46:1596–1601 [View Article][PubMed]
    [Google Scholar]
  17. Song Y., Liu C., Lee J., Bolanos M., Vaisanen M. L., Finegold S. M. 2005; Bacteroides goldsteinii sp. nov.’ isolated from clinical specimens of human intestinal origin. J Clin Microbiol 43:4522–4527 [View Article][PubMed]
    [Google Scholar]
  18. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  19. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  20. Tindall B. J. 1989; Fully saturated menaquinones in the archaebacterium Pyrobaculum islandicum . FEMS Microbiol Lett 60:251–254 [View Article]
    [Google Scholar]
  21. Widdel F., Kohring G. W., Mayer F. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch Microbiol 134:286–294 [View Article]
    [Google Scholar]
  22. Xu X.-W., Wu Y.-H., Zhou Z., Wang C.-S., Zhou Y.-G., Zhang H.-B., Wang Y., Wu M. 2007; Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57:1619–1624 [View Article][PubMed]
    [Google Scholar]
  23. Zhang X.-Q., Ying Y., Ye Y., Xu X.-W., Zhu X.-F., Wu M. 2010; Thermus arciformis sp. nov., a thermophilic species from a geothermal area. Int J Syst Evol Microbiol 60:834–839 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038000-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038000-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error