1887

Abstract

Three chickpea rhizobial strains (CCBAU 83963, CCBAU 83939 and CCBAU 83908), which were identified previously as representing a distinctive genospecies, were further studied here and compared taxonomically with related species in the genus . Results from SDS-PAGE of whole-cell soluble proteins revealed differences from closely related recognized species of the genus . Levels of DNA–DNA relatedness were 15.28–50.97 % between strain CCBAU 83963 and the type strains of recognized species (except for ). Strain CCBAU 83963 contained fatty acids characteristic of members of the genus , but it possessed high concentrations of C cyclo ω8 and iso-C. Strain CCBAU 83963 had phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol as major polar lipids, and an ornithine-containing lipid, phosphatidyl--dimethylethanolamine and cardiolipin as minor components. Nodulation tests demonstrated the distinct symbiotic character of strain CCBAU 83963; only , its host plant, could be invaded to form effective nitrogen-fixing nodules. The narrow spectrum of utilization of sole carbon sources, lower resistance to antibiotics, and NaCl, pH and temperature growth ranges differentiated these novel rhizobia from recognized species of the genus . Based on the data presented, the three novel rhizobial strains are considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CCBAU 83963 ( = HAMBI 3264 = CGMCC 1.11022).

Funding
This study was supported by the:
  • Foundation of the State Key Basic Research and Development Plan of China (Award 2010CB126500)
  • National Natural Science Foundation of China (Award 30870004 and 30970004)
  • SKLAB (Award 2011SKLAB06-8, 2010SKLAB01-1 and 2009SKLAB05-1)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038265-0
2012-11-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/11/2737.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038265-0&mimeType=html&fmt=ahah

References

  1. Choma A., Komaniecka I. 2002; Analysis of phospholipids and ornithine-containing lipids from Mesorhizobium spp. Syst Appl Microbiol 25:326–331 [View Article][PubMed]
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  3. Dittmer J. C., Lester R. L. 1964; A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 15:126–127[PubMed]
    [Google Scholar]
  4. Graham P., Sadowsky M., Keyser H., Barnet Y. M., Bradley R. S., Cooper J. E., De Ley D. J., Jarvis B. D. W., Roslycky E. B. other authors 1991; Proposed minimal standards for the description of new genera and species of root-and stem-nodulating bacteria. Int J Syst Evol Microbiol 41:582–587
    [Google Scholar]
  5. L’taief B., Sifi B., Gtari M., Zaman-Allah M., Lachaâl M. 2007; Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Tunisia. Can J Microbiol 53:427–434 [View Article][PubMed]
    [Google Scholar]
  6. Laranjo M., Machado J., Young J. P. W., Oliveira S. 2004; High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region. FEMS Microbiol Ecol 48:101–107 [View Article][PubMed]
    [Google Scholar]
  7. Laranjo M., Alexandre A., Rivas R., Velázquez E., Young J. P. W., Oliveira S. 2008; Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiol Ecol 66:391–400 [View Article][PubMed]
    [Google Scholar]
  8. Maâtallah J., Berraho E. B., Muñoz S., Sanjuan J., Lluch C. 2002; Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Morocco. J Appl Microbiol 93:531–540 [View Article][PubMed]
    [Google Scholar]
  9. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12:195–206 [View Article]
    [Google Scholar]
  10. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  11. Martens M., Dawyndt P., Coopman R., Gillis M., De Vos P., Willems A. 2008; Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214 [View Article][PubMed]
    [Google Scholar]
  12. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  13. Nandwani R., Dudeja S. S. 2009; Molecular diversity of a native mesorhizobial population of nodulating chickpea (Cicer arietinum L.) in Indian soils. J Basic Microbiol 49:463–470 [View Article][PubMed]
    [Google Scholar]
  14. Nour S. M., Fernandez M. P., Normand P., Cleyet-Marel J. C. 1994; Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44:511–522 [View Article][PubMed]
    [Google Scholar]
  15. Nour S. M., Cleyet-Marel J. C., Normand P., Fernandez M. P. 1995; Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov.. Int J Syst Bacteriol 45:640–648 [View Article][PubMed]
    [Google Scholar]
  16. Ohta H., Hattori T. 1983; Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie van Leeuwenhoek 49:429–446[PubMed]
    [Google Scholar]
  17. Rivas R., Laranjo M., Mateos P. F., Oliveira S., Martínez-Molina E., Velázquez E. 2007; Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum . Lett Appl Microbiol 44:412–418 [View Article][PubMed]
    [Google Scholar]
  18. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  19. Smibert R. M., Krieg N. R. 1994 Phenotypic Characterization Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S. 2001; Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov.. Int J Syst Evol Microbiol 51:1639–1652 [View Article][PubMed]
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  22. Tan Z. Y., Xu X. D., Wang E. T., Gao J. L., Martínez-Romero E., Chen W. X. 1997; Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int J Syst Bacteriol 47:874–879 [View Article][PubMed]
    [Google Scholar]
  23. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. 2000; Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801 [View Article][PubMed]
    [Google Scholar]
  24. Vincent J. M. 1970 A Manual for the Practical Study of the Root Nodule Bacteria Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  25. Vinuesa P., Silva C., Lorite M. J., Izaguirre-Mayoral M. L., Bedmar E. J., Martínez-Romero E. 2005a; Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716 [View Article][PubMed]
    [Google Scholar]
  26. Vinuesa P., Silva C., Werner D., Martínez-Romero E. 2005b; Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54 [View Article][PubMed]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  28. Wei G. H., Tan Z. Y., Zhu M. E., Wang E. T., Han S. Z., Chen W. X. 2003; Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov.. Int J Syst Evol Microbiol 53:1575–1583 [View Article][PubMed]
    [Google Scholar]
  29. Zhang J. J., Lou K., Jin X., Mao P. H., Wang E. T., Tian C. F., Sui X. H., Chen W. F., Chen W. X. 2012; Distinctive Mesorhizobium populations associated with Cicer arietinum L. in alkaline soils of Xinjiang, China. Plant Soil 353:123–134 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038265-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038265-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error