1887

Abstract

The pigeon pea witches’-broom phytoplasma group (16SrIX) comprises diverse strains that cause numerous diseases in leguminous trees and herbaceous crops, vegetables, a fruit, a nut tree and a forest tree. At least 14 strains have been reported worldwide. Comparative phylogenetic analyses of the highly conserved 16S rRNA gene and the moderately conserved ()– () and genes indicated that the 16SrIX group consists of at least six distinct genetic lineages. Some of these lineages cannot be readily differentiated based on analysis of 16S rRNA gene sequences alone. The relative genetic distances among these closely related lineages were better assessed by including more variable genes [e.g. ribosomal protein (rp) and genes]. The present study demonstrated that virtual RFLP analyses using rp and gene sequences allowed unambiguous identification of such lineages. A coding system is proposed to designate each distinct rp and subgroup in the 16SrIX group.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038273-0
2012-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/9/2279.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038273-0&mimeType=html&fmt=ahah

References

  1. Abou-Jawdah Y., Karakashian A., Sobh H., Martini M., Lee I.-M. 2002; An epidemic of almond witches’-broom in Lebanon: classification and phylogenetic relationships of the associated phytoplasma. Plant Dis 86:477–484 [View Article]
    [Google Scholar]
  2. Bertaccini A. 2007; Phytoplasmas: diversity, taxonomy, and epidemiology. Front Biosci 12:673–689 [View Article][PubMed]
    [Google Scholar]
  3. Davis R. E., Dally E. L., Zhao Y., Lee I. M., Jomantiene R., Detweiler A. J., Putnam M. L. 2010; First report of a new subgroup 16SrIX-E (‘Candidatus Phytoplasma phoenicium’-related) phytoplasma associated with juniper witches’-broom disease in Oregon, USA. Plant Pathol 59:1161 [View Article]
    [Google Scholar]
  4. Deng S., Hiruki C. 1991; Genetic relatedness between two nonculturable mycoplasmalike organisms revealed by nucleic acid hybridization and polymerase chain reaction. Phytopathology 81:1475–1479 [View Article]
    [Google Scholar]
  5. Green M. J., Thompson D. A., MacKenzie D. J. 1999; Easy and efficient DNA extraction from woody plants for the detection of phytoplasmas by polymerase chain reaction. Plant Dis 83:482–485 [View Article]
    [Google Scholar]
  6. Gundersen D. E., Lee I.-M., Rehner S. A., Davis R. E., Kingsbury D. T. 1994; Phylogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification. J Bacteriol 176:5244–5254[PubMed]
    [Google Scholar]
  7. Hodgetts J., Boonham N., Mumford R., Harrison N., Dickinson M. 2008; Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. Int J Syst Evol Microbiol 58:1826–1837 [View Article][PubMed]
    [Google Scholar]
  8. Hogenhout S. A., Oshima K., Ammar D., Kakizawa S., Kingdom H. N., Namba S. 2008; Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9:403–423 [View Article][PubMed]
    [Google Scholar]
  9. IRPCM Phytoplasma/Spiroplasma Working Team – Phytoplasma Taxonomy Group 2004; Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255 [View Article][PubMed]
    [Google Scholar]
  10. Lee I.-M., Davis R. E., Sinclair W. A., DeWitt N. D., Conti M. 1993; Genetic relatedness of mycoplasmalike organisms detected in Ulmus spp. in the United States and Italy by means of DNA probes and polymerase chain reactions. Phytopathology 83:829–833 [View Article]
    [Google Scholar]
  11. Lee I.-M., Gundersen-Rindal D. E., Davis R. E., Bartoszyk I. M. 1998; Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int J Syst Bacteriol 48:1153–1169 [View Article]
    [Google Scholar]
  12. Lee I.-M., Davis R. E., Gundersen-Rindal D. E. 2000; Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 54:221–255 [View Article][PubMed]
    [Google Scholar]
  13. Lee I.-M., Martini M., Bottner K. D., Dane R. A., Black M. C., Troxclair N. 2003; Ecological implications from a molecular analysis of phytoplasmas involved in an aster yellows epidemic in various crops in Texas. Phytopathology 93:1368–1377 [View Article][PubMed]
    [Google Scholar]
  14. Lee I.-M., Martini M., Marcone C., Zhu S. F. 2004; Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. Int J Syst Evol Microbiol 54:337–347 [View Article][PubMed]
    [Google Scholar]
  15. Lee I.-M., Zhao Y., Bottner K. D. 2006; SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Mol Cell Probes 20:87–91 [View Article][PubMed]
    [Google Scholar]
  16. Lee I.-M., Bottner-Parker K. D., Zhao Y., Davis R. E., Harrison N. A. 2010; Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. Int J Syst Evol Microbiol 60:2887–2897 [View Article][PubMed]
    [Google Scholar]
  17. Lim P. O., Sears B. B. 1992; Evolutionary relationships of a plant-pathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences. J Bacteriol 174:2606–2611[PubMed]
    [Google Scholar]
  18. Martini M., Lee I.-M., Bottner K. D., Zhao Y., Botti S., Bertaccini A., Harrison N. A., Carraro L., Marcone C. other authors 2007; Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. Int J Syst Evol Microbiol 57:2037–2051 [View Article][PubMed]
    [Google Scholar]
  19. Schneider B., Seemüller E., Smart C. D., Kirkpatrick B. C. 1995; Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. In Molecular and Diagnostic Procedures in Mycoplasmology vol. 2 pp. 369–380 Edited by Razin S., Tully J. G. New York: Academic Press; [View Article]
    [Google Scholar]
  20. Seemüller E., Schneider B., Mäurer R., Ahrens U., Daire X., Kison H., Lorenz K. H., Firrao G., Avinent L. other authors 1994; Phylogenetic classification of phytopathogenic mollicutes by sequence analysis of 16S ribosomal DNA. Int J Syst Bacteriol 44:440–446 [View Article][PubMed]
    [Google Scholar]
  21. Seemüller E., Marcone C., Lauer U., Ragozzino A., Göschl M. 1998; Current status of molecular classification of the phytoplasmas. J Plant Pathol 80:3–26
    [Google Scholar]
  22. Swofford D. L. 1998; Phylogenetic analysis using parsimony (paup), version 4. Sunderland, MA: Sinauer Associates;
  23. Wei W., Davis R. E., Lee I.-M., Zhao Y. 2007; Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57:1855–1867 [View Article][PubMed]
    [Google Scholar]
  24. Wei W., Lee I.-M., Davis R. E., Suo X., Zhao Y. 2008; Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int J Syst Evol Microbiol 58:2368–2377 [View Article][PubMed]
    [Google Scholar]
  25. Zhao Y., Wei W., Lee I.-M., Shao J., Suo X., Davis R. E. 2009; Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol 59:2582–2593 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038273-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038273-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error