1887

Abstract

Two extremely halophilic archaea, designated YIM 94188 and YIM 94189, were isolated from Qijiaojing lake in Xinjiang province, north-west China and subjected to taxonomic characterization using a polyphasic approach. The cells of the two strains were coccoid, non-motile and Gram-stain-negative. Colonies were pink–white-pigmented and aerobic. Growth occurred at 10–30 % (w/v) NaCl, 20–55 °C and pH 6.0–8.0 (optimum: 20–25 % NaCl, 37–42 °C, pH 6.5–7.0). Magnesium was necessary for growth in the range of 0.2–1.2 M. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the two strains belonged to the genus showing 98.5 % sequence similarity to the closest phylogenetic neighbour, RO5-2. In addition, the DNA–DNA hybridization values of strains YIM 94188 and YIM 94189 to RO5-2 were 35.7 % and 37.7 %, respectively. Polar lipid analyses revealed that the two strains contained phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), sulfated mannosyl glucosyl diether (S-DGD-1) and mannosyl glucosyl diether (DGD-1). The DNA G+C contents of strains YIM 94188 and YIM 94189 were 66.3 mol% and 64.6 mol%, respectively. On the basis of physiological and chemotaxonomic data, and phylogenetic analysis, strains YIM 94188 and YIM 94189 were classified as representing a novel species in the genus . The name sp. nov. is proposed, with YIM 94188 ( = CCTCC AB 2010456 = JCM 17506) as the type strain.

Funding
This study was supported by the:
  • National High-tech R&D Program of China (863 Program) (Award 2012AA021705)
  • National Natural Science Foundation of China (Award 201200008)
  • West Light Foundation of the Chinese Academy of Sciences
  • Chinese Academy of Sciences
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.045773-0
2013-06-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/6/2192.html?itemId=/content/journal/ijsem/10.1099/ijs.0.045773-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. (editors) ( 1993 ). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [View Article]
    [Google Scholar]
  2. Christensen H., Angen O., Mutters R., Olsen J. E., Bisgaard M. ( 2000 ). DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. . Int J Syst Evol Microbiol 50, 10951102. [View Article] [PubMed]
    [Google Scholar]
  3. Cui H. L., Lin Z. Y., Dong Y., Zhou P. J., Liu S. J. ( 2007 ). Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. . Int J Syst Evol Microbiol 57, 22042206. [View Article] [PubMed]
    [Google Scholar]
  4. Cui H. L., Li X. Y., Gao X., Xu X. W., Zhou Y. G., Liu H. C., Oren A., Zhou P. J. ( 2010a ). Halopelagius inordinatus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. . Int J Syst Evol Microbiol 60, 20892093. [View Article] [PubMed]
    [Google Scholar]
  5. Cui H. L., Gao X., Yang X., Xu X. W. ( 2010b ). Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. . Extremophiles 14, 493499. [View Article] [PubMed]
    [Google Scholar]
  6. Dussault H. P. ( 1955 ). An improved technique for staining red halophilic bacteria. . J Bacteriol 70, 484485.[PubMed]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989 ). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39, 224229. [View Article]
    [Google Scholar]
  8. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  9. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  10. Fitch W. M. ( 1971 ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20, 406416. [View Article]
    [Google Scholar]
  11. Guindon S., Gascuel O. ( 2003 ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52, 696704. [View Article] [PubMed]
    [Google Scholar]
  12. Gutiérrez M. C., Castillo A. M., Kamekura M., Ventosa A. ( 2008 ). Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. . Int J Syst Evol Microbiol 58, 28802884. [View Article] [PubMed]
    [Google Scholar]
  13. Kates M. ( 1986 ). Techniques of Lipidology, , 2nd edn., pp. 106107, 241–246. Amsterdam:: Elsevier;.
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  15. Kimura M. ( 1983 ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [View Article]
    [Google Scholar]
  16. Leifson E. ( 1960 ). Atlas of Bacterial Flagellation. London:: Academic Press;.
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [View Article]
    [Google Scholar]
  18. Minnikin D. E., Collins M. D., Goodfellow M. ( 1979 ). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47, 8795. [View Article]
    [Google Scholar]
  19. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. ( 1984 ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2, 233241. [View Article]
    [Google Scholar]
  20. Ng W.-L., Yang C.-F., Halladay J. T., Arora A., DasSarma S. ( 1995 ). Protocol 25. Isolation of genomic and plasmid DNAs from Halobacterium halobium . . In Archaea: a Laboratory Manual: Halophiles , pp. 179180. Edited by DasSarma S., Fleischmann E. M. . Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  21. Oren A. ( 2000 ). The order Halobacteriales . . In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, release 3.2. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. . New York:: Springer;.
    [Google Scholar]
  22. Oren A., Ventosa A., Grant W. D. ( 1997 ). Proposed minimal standards for description of new taxa in the order Halobacteriales . . Int J Syst Bacteriol 47, 233238. [View Article]
    [Google Scholar]
  23. Roh S. W., Nam Y. D., Chang H. W., Sung Y., Kim K. H., Oh H. M., Bae J. W. ( 2007 ). Halalkalicoccus jeotgali sp. nov., a halophilic archaeon from shrimp jeotgal, a traditional Korean fermented seafood. . Int J Syst Evol Microbiol 57, 22962298. [View Article] [PubMed]
    [Google Scholar]
  24. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  25. Stackebrandt E., Goebel B. M. ( 1994 ). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44, 846849. [View Article]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997 ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25, 48764882. [View Article] [PubMed]
    [Google Scholar]
  28. Wang Z. X., Yu Y., Zhou P. G. ( 2000 ). [Taxonomy of a new species of haloalkalophilic archaeon]. . Wei Sheng Wu Xue Bao 40, 115120 (in Chinese).[PubMed]
    [Google Scholar]
  29. Williams S. T., Goodfellow M., Alderson G. ( 1989 ). Genus Streptomyces Waksman and Henrici 1943, 339AL . . In Bergey’s Manual of Systematic Bacteriology, vol. 4, pp. 24632468. Edited by Bergey D. H., Williams S. T., Holt J. G., Krieg N. R. . Baltimore:: Williams and Wilkins;.
    [Google Scholar]
  30. Xue Y., Fan H., Ventosa A., Grant W. D., Jones B. E., Cowan D. A., Ma Y. ( 2005 ). Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. . Int J Syst Evol Microbiol 55, 25012505. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.045773-0
Loading
/content/journal/ijsem/10.1099/ijs.0.045773-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error