1887

Abstract

The genus is a phylogenetically incoherent taxon with members of the group lacking a common evolutionary history. Comprising aerobic and anaerobic spore-forming bacteria, no characteristics are known that can distinguish species of this genus from other similar endospore-forming genera. With the availability of complete genomic data from over 30 different species from this group, we have constructed detailed phylogenetic trees to determine the relationships among and other closely related taxa. Additionally, we have performed comparative genomic analysis for the determination of molecular markers, in the form of conserved signature indels (CSIs), to assist in the understanding of relationships among species of the genus in molecular terms. Based on the analysis, we report here the identification of 11 and 6 CSIs that clearly differentiate a ‘ clade’ and a ‘ clade’, respectively, from all other species of the genus . No molecular markers were identified that supported a larger clade within this genus. The subtilis and the cereus clades were also the largest observed monophyletic groupings among species from the genus in the phylogenetic trees based on 16S rRNA gene sequences and those based upon concatenated sequences for 20 conserved proteins. Thus, the relationships observed among these groups of species through CSIs are independently well supported by phylogenetic analysis. The molecular markers identified in this study provide a reliable means for the reorganization of the currently polyphyletic genus into a more evolutionarily consistent set of groups. It is recommended that the genus should comprise only the monophyletic subtilis clade that is demarcated by the identified CSIs, with as its type species. Members of the adjoining cereus clade (referred to as the Cereus clade of bacilli), although they are distinct from the subtilis clade, will also retain the genus name as they contain several clinically important species, and their transfer into a new genus could have serious consequences. However, all other species that are currently part of the genus and not part of these two clades should be eventually transferred to other genera. We also propose that all novel species of the genus must meet minimal requirements, foremost among which is that the branching of the prospective species with the clade or the Cereus clade of bacilli should be strongly supported by 16S rRNA gene sequence trees or trees based upon concatenated protein sequences. Additionally, the presence of one or more of the CSIs that are specific for these clades may be used to confirm molecularly the placement of the species into these clades. The identified CSIs, in addition to their usefulness for taxonomic and diagnostic purposes, also provide novel probes for genetic and biochemical studies of these bacteria.

Funding
This study was supported by the:
  • Natural Science and Engineering Research Council of Canada
  • Health Protection Agency
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.048488-0
2013-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/7/2712.html?itemId=/content/journal/ijsem/10.1099/ijs.0.048488-0&mimeType=html&fmt=ahah

References

  1. Ahmed I., Yokota A., Yamazoe A., Fujiwara T. ( 2007 ). Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov.. Int J Syst Evol Microbiol 57, 11171125. [View Article] [PubMed]
    [Google Scholar]
  2. Ahmod N. Z., Gupta R. S., Shah H. N. ( 2011 ). Identification of a Bacillus anthracis specific indel in the yeaC gene and development of a rapid pyrosequencing assay for distinguishing B. anthracis from the B. cereus group. . J Microbiol Methods 87, 278285. [View Article] [PubMed]
    [Google Scholar]
  3. Alcaraz L. D., Olmedo G., Bonilla G., Cerritos R., Hernández G., Cruz A., Ramírez E., Putonti C., Jiménez B. & other authors ( 2008 ). The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment. . Proc Natl Acad Sci U S A 105, 58035808. [View Article] [PubMed]
    [Google Scholar]
  4. Alcaraz L. D., Moreno-Hagelsieb G., Eguiarte L. E., Souza V., Herrera-Estrella L., Olmedo G. ( 2010 ). Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. . BMC Genomics 11, 332. [View Article] [PubMed]
    [Google Scholar]
  5. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. ( 1991 ). Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. . Lett Appl Microbiol 13, 202206. [View Article]
    [Google Scholar]
  6. Ash C., Priest F. G., Collins M. D. ( 1993/1994 ). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . . Antonie van Leeuwenhoek 64, 253260. [View Article] [PubMed]
    [Google Scholar]
  7. Bavykin S. G., Lysov Y. P., Zakhariev V., Kelly J. J., Jackman J., Stahl D. A., Cherni A. ( 2004 ). Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group microorganisms. . J Clin Microbiol 42, 37113730. [View Article] [PubMed]
    [Google Scholar]
  8. Bhandari V., Gupta R. S. ( 2012 ). Molecular signatures for the phylum Synergistetes and some of its subclades. . Antonie van Leeuwenhoek 102, 517540. [View Article] [PubMed]
    [Google Scholar]
  9. Bhandari V., Naushad H. S., Gupta R. S. ( 2012 ). Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution. . Front Cell Infect Microbiol 2, 98. [View Article] [PubMed]
    [Google Scholar]
  10. Borriss R., Chen X. H., Rueckert C., Blom J., Becker A., Baumgarth B., Fan B., Pukall R., Schumann P. & other authors ( 2011 ). Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. . Int J Syst Evol Microbiol 61, 17861801. [View Article] [PubMed]
    [Google Scholar]
  11. Bottone E. J. ( 2010 ). Bacillus cereus, a volatile human pathogen. . Clin Microbiol Rev 23, 382398. [View Article] [PubMed]
    [Google Scholar]
  12. Castresana J. ( 2000 ). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol 17, 540552. [View Article] [PubMed]
    [Google Scholar]
  13. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. & other authors ( 2009 ). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37 (Database issue), D141D145. [View Article] [PubMed]
    [Google Scholar]
  14. Connor N., Sikorski J., Rooney A. P., Kopac S., Koeppel A. F., Burger A., Cole S. G., Perry E. B., Krizanc D. & other authors ( 2010 ). Ecology of speciation in the genus Bacillus . . Appl Environ Microbiol 76, 13491358. [View Article] [PubMed]
    [Google Scholar]
  15. Eppinger M., Bunk B., Johns M. A., Edirisinghe J. N., Kutumbaka K. K., Koenig S. S., Creasy H. H., Rosovitz M. J., Riley D. R. & other authors ( 2011 ). Genome sequences of the biotechnologically important Bacillus megaterium strains QM B1551 and DSM319. . J Bacteriol 193, 41994213. [View Article] [PubMed]
    [Google Scholar]
  16. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  17. Fortina M. G., Pukall R., Schumann P., Mora D., Parini C., Manachini P. L., Stackebrandt E. ( 2001 ). Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Andersson et al. 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov.. Int J Syst Evol Microbiol 51, 447455. [PubMed] [CrossRef]
    [Google Scholar]
  18. Fritze D. ( 2004 ). Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. . Phytopathology 94, 12451248. [View Article] [PubMed]
    [Google Scholar]
  19. Gao B., Gupta R. S. ( 2005 ). Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria . . Int J Syst Evol Microbiol 55, 24012412. [View Article] [PubMed]
    [Google Scholar]
  20. Gao B., Gupta R. S. ( 2012a ). Microbial systematics in the post-genomics era. . Antonie van Leeuwenhoek 101, 4554. [View Article] [PubMed]
    [Google Scholar]
  21. Gao B., Gupta R. S. ( 2012b ). Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria . . Microbiol Mol Biol Rev 76, 66112. [View Article] [PubMed]
    [Google Scholar]
  22. Gibbons H. S., Broomall S. M., McNew L. A., Daligault H., Chapman C., Bruce D., Karavis M., Krepps M., McGregor P. A. & other authors ( 2011 ). Genomic signatures of strain selection and enhancement in Bacillus atrophaeus var. globigii, a historical biowarfare simulant. . PLoS ONE 6, e17836. [View Article] [PubMed]
    [Google Scholar]
  23. Gioia J., Yerrapragada S., Qin X., Jiang H., Igboeli O. C., Muzny D., Dugan-Rocha S., Ding Y., Hawes A. & other authors ( 2007 ). Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032. . PLoS ONE 2, e928. [View Article] [PubMed]
    [Google Scholar]
  24. Griffiths E., Petrich A. K., Gupta R. S. ( 2005 ). Conserved indels in essential proteins that are distinctive characteristics of Chlamydiales and provide novel means for their identification. . Microbiology 151, 26472657. [View Article] [PubMed]
    [Google Scholar]
  25. Gupta R. S. ( 1998 ). Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. . Microbiol Mol Biol Rev 62, 14351491. [PubMed]
    [Google Scholar]
  26. Gupta R. S. ( 2009 ). Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. . Int J Syst Evol Microbiol 59, 25102526. [View Article] [PubMed]
    [Google Scholar]
  27. Gupta R. S. ( 2010 ). Applications of conserved indels for understanding microbial phylogeny. . In Molecular Phylogeny of Microorganisms, pp. 135150. Edited by Oren A., Papke R. T. . Norfolk, UK:: Caister Academic Press;.
    [Google Scholar]
  28. Gupta R. S., Bhandari V. ( 2011 ). Phylogeny and molecular signatures for the phylum Thermotogae and its subgroups. . Antonie van Leeuwenhoek 100, 134. [View Article] [PubMed]
    [Google Scholar]
  29. Gupta R. S., Griffiths E. ( 2002 ). Critical issues in bacterial phylogeny. . Theor Popul Biol 61, 423434. [View Article] [PubMed]
    [Google Scholar]
  30. Han C. S., Xie G., Challacombe J. F., Altherr M. R., Bhotika S. S., Brown N., Bruce D., Campbell C. S., Campbell M. L. & other authors ( 2006 ). Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis . . J Bacteriol 188, 33823390. [View Article] [PubMed]
    [Google Scholar]
  31. Harwood C. R. ( 1992 ). Bacillus subtilis and its relatives: molecular biological and industrial workhorses. . Trends Biotechnol 10, 247256. [View Article] [PubMed]
    [Google Scholar]
  32. Heggeset T. M., Krog A., Balzer S., Wentzel A., Ellingsen T. E., Brautaset T. ( 2012 ). Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of l-lysine and l-glutamate from methanol. . Appl Environ Microbiol 78, 51705181. [View Article] [PubMed]
    [Google Scholar]
  33. Heyndrickx M., Lebbe L., Kersters K., De Vos P., Forsyth G., Logan N. A. ( 1998 ). Virgibacillus: a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus . . Int J Syst Bacteriol 48, 99106. [View Article]
    [Google Scholar]
  34. Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B., Kapatral V., Bhattacharyya A., Reznik G., Mikhailova N. & other authors ( 2003 ). Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis . . Nature 423, 8791. [View Article] [PubMed]
    [Google Scholar]
  35. Janto B., Ahmed A., Ito M., Liu J., Hicks D. B., Pagni S., Fackelmayer O. J., Smith T. A., Earl J. & other authors ( 2011 ). Genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. . Environ Microbiol 13, 32893309. [View Article] [PubMed]
    [Google Scholar]
  36. Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J. ( 1998 ). Multiple sequence alignment with clustal_x . . Trends Biochem Sci 23, 403405. [View Article] [PubMed]
    [Google Scholar]
  37. Kazakov A. E., Rodionov D. A., Alm E., Arkin A. P., Dubchak I., Gelfand M. S. ( 2009 ). Comparative genomics of regulation of fatty acid and branched-chain amino acid utilization in proteobacteria. . J Bacteriol 191, 5264. [View Article] [PubMed]
    [Google Scholar]
  38. Kim B. K., Chung J. H., Kim S. Y., Jeong H., Kang S. G., Kwon S. K., Lee C. H., Song J. Y., Yu D. S. & other authors ( 2012 ). Genome sequence of the leaf-colonizing bacterium Bacillus sp. strain 5B6, isolated from a cherry tree. . J Bacteriol 194, 37583759. [View Article] [PubMed]
    [Google Scholar]
  39. Klenk H. P., Lapidus A., Chertkov O., Copeland A., Del Rio T. G., Nolan M., Lucas S., Chen F., Tice H. & other authors ( 2011 ). Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2T) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacillaceae da Costa and Rainey, 2010. . Stand Genomic Sci 5, 121134. [View Article] [PubMed]
    [Google Scholar]
  40. Koehler T. M. ( 2009 ). Bacillus anthracis physiology and genetics. . Mol Aspects Med 30, 386396. [View Article] [PubMed]
    [Google Scholar]
  41. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A. & other authors ( 1997 ). The complete genome sequence of the gram-positive bacterium Bacillus subtilis . . Nature 390, 249256. [View Article] [PubMed]
    [Google Scholar]
  42. La Duc M. T., Satomi M., Agata N., Venkateswaran K. ( 2004 ). gyrB as a phylogenetic discriminator for members of the Bacillus anthraciscereusthuringiensis group. . J Microbiol Methods 56, 383394. [View Article] [PubMed]
    [Google Scholar]
  43. Lapidus A., Goltsman E., Auger S., Galleron N., Ségurens B., Dossat C., Land M. L., Broussolle V., Brillard J. & other authors ( 2008 ). Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. . Chem Biol Interact 171, 236249. [View Article] [PubMed]
    [Google Scholar]
  44. Logan N. A. ( 2012 ). Bacillus and relatives in foodborne illness. . J Appl Microbiol 112, 417429. [View Article] [PubMed]
    [Google Scholar]
  45. Logan N. A., De Vos P. ( 2009 ). Genus Bacillus Cohn 1872. . In Bergey’s Manual of Systematic Bacteriology, pp. 21128. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Williams B. L. . New York:: Springer;.
    [Google Scholar]
  46. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. & other authors ( 2009 ). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59, 21142121. [View Article] [PubMed]
    [Google Scholar]
  47. Nazina T. N., Tourova T. P., Poltaraus A. B., Novikova E. V., Grigoryan A. A., Ivanova A. E., Lysenko A. M., Petrunyaka V. V., Osipov G. A. & other authors ( 2001 ). Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans . . Int J Syst Evol Microbiol 51, 433446. [PubMed]
    [Google Scholar]
  48. Pignatelli M., Moya A., Tamames J. ( 2009 ). EnvDB, a database for describing the environmental distribution of prokaryotic taxa. . Environmental Microbiology Reports 1, 191197. [View Article]
    [Google Scholar]
  49. Ravel J., Fraser C. M. ( 2005 ). Genomics at the genus scale. . Trends Microbiol 13, 9597. [View Article] [PubMed]
    [Google Scholar]
  50. Read T. D., Peterson S. N., Tourasse N., Baillie L. W., Paulsen I. T., Nelson K. E., Tettelin H., Fouts D. E., Eisen J. A. & other authors ( 2003 ). The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. . Nature 423, 8186. [View Article] [PubMed]
    [Google Scholar]
  51. Rössler D., Ludwig W., Schleifer K. H., Lin C., McGill T. J., Wisotzkey J. D., Jurtshuk P. Jr, Fox G. E. ( 1991 ). Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies. . Syst Appl Microbiol 14, 266269. [View Article] [PubMed]
    [Google Scholar]
  52. Sanchis V., Bourguet D. ( 2009 ). Bacillus thuringiensis . . In Applications in Agriculture and Insect Resistance Management – A Review, pp. 243255. Edited by Lichtfouse E., Navarrete M., Debaeke P., Veronique S., Alberola C. . Netherlands:: Springer;. [View Article]
    [Google Scholar]
  53. Schmidt T. R., Scott E. J. II, Dyer D. W. ( 2011 ). Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group. . BMC Genomics 12, 430. [View Article] [PubMed]
    [Google Scholar]
  54. Seki T., Chung C., Mikami H., Oshima Y. ( 1978 ). Deoxyribonucleic acid homology and taxonomy of the genus Bacillus . . Int J Syst Bacteriol 28, 182189. [View Article]
    [Google Scholar]
  55. Shida O., Takagi H., Kadowaki K., Komagata K. ( 1996 ). Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov.. Int J Syst Bacteriol 46, 939946. [View Article] [PubMed]
    [Google Scholar]
  56. Singh B., Gupta R. S. ( 2009 ). Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. . Mol Genet Genomics 281, 361373. [View Article] [PubMed]
    [Google Scholar]
  57. Song J. Y., Kim H. A., Kim J. S., Kim S. Y., Jeong H., Kang S. G., Kim B. K., Kwon S. K., Lee C. H. & other authors ( 2012 ). Genome sequence of the plant growth-promoting rhizobacterium Bacillus sp. strain JS. . J Bacteriol 194, 37603761. [View Article] [PubMed]
    [Google Scholar]
  58. Stackebrandt E., Ludwig W., Weizenegger M., Dorn S., McGill T. J., Fox G. E., Woese C. R., Schubert W., Schleifer K. H. ( 1987 ). Comparative 16S rRNA oligonucleotide analyses and murein types of round-spore-forming bacilli and non-spore-forming relatives. . J Gen Microbiol 133, 25232529. [PubMed]
    [Google Scholar]
  59. Stein T. ( 2005 ). Bacillus subtilis antibiotics: structures, syntheses and specific functions. . Mol Microbiol 56, 845857. [View Article] [PubMed]
    [Google Scholar]
  60. Takami H., Nakasone K., Takaki Y., Maeno G., Sasaki R., Masui N., Fuji F., Hirama C., Nakamura Y. & other authors ( 2000 ). Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis . . Nucleic Acids Res 28, 43174331. [View Article] [PubMed]
    [Google Scholar]
  61. Tamura K., Nei M., Kumar S. ( 2004 ). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101, 1103011035. [View Article] [PubMed]
    [Google Scholar]
  62. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  63. Tettelin H., Riley D., Cattuto C., Medini D. ( 2008 ). Comparative genomics: the bacterial pan-genome. . Curr Opin Microbiol 11, 472477. [View Article] [PubMed]
    [Google Scholar]
  64. Tourasse N. J., Helgason E., Økstad O. A., Hegna I. K., Kolstø A. B. ( 2006 ). The Bacillus cereus group: novel aspects of population structure and genome dynamics. . J Appl Microbiol 101, 579593. [View Article] [PubMed]
    [Google Scholar]
  65. Veith B., Herzberg C., Steckel S., Feesche J., Maurer K. H., Ehrenreich P., Bäumer S., Henne A., Liesegang H. & other authors ( 2004 ). The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. . J Mol Microbiol Biotechnol 7, 204211. [View Article] [PubMed]
    [Google Scholar]
  66. Wainø M., Tindall B. J., Schumann P., Ingvorsen K. ( 1999 ). Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov.. Int J Syst Bacteriol 49, 821831. [View Article] [PubMed]
    [Google Scholar]
  67. Wang L. T., Lee F. L., Tai C. J., Kasai H. ( 2007 ). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. . Int J Syst Evol Microbiol 57, 18461850. [View Article] [PubMed]
    [Google Scholar]
  68. Wang X., Luo C., Chen Z. ( 2012 ). Genome sequence of the plant growth-promoting rhizobacterium Bacillus sp. strain 916. . J Bacteriol 194, 54675468. [View Article] [PubMed]
    [Google Scholar]
  69. Wisotzkey J. D., Jurtshuk P. Jr, Fox G. E., Deinhard G., Poralla K. ( 1992 ). Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov.. Int J Syst Bacteriol 42, 263269. [View Article] [PubMed]
    [Google Scholar]
  70. Wunschel D., Fox K. F., Black G. E., Fox A. ( 1995 ). Discrimination among the B. cereus group, in comparison to B. subtilis, by structural carbohydrate profiles and ribosomal RNA spacer regions PCR. . Syst Appl Microbiol 17, 625635. [View Article]
    [Google Scholar]
  71. Yoon J. H., Lee K. C., Weiss N., Kho Y. H., Kang K. H., Park Y. H. ( 2001 ). Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina . . Int J Syst Evol Microbiol 51, 10791086. [View Article] [PubMed]
    [Google Scholar]
  72. Zeigler D. R. ( 2011 ). The genome sequence of Bacillus subtilis subsp. spizizenii W23: insights into speciation within the B. subtilis complex and into the history of B. subtilis genetics. . Microbiology 157, 20332041. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.048488-0
Loading
/content/journal/ijsem/10.1099/ijs.0.048488-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error