1887

Abstract

A bacterial strain designated RLAHU4B was isolated from root nodules of in León (Spain). The 16S rRNA gene sequence of this strain showed similarities lower than 97 % with respect to species of the genus . The strain was a Gram-variable, sporulating rod, motile by means of peritrichous flagella, and facultatively anaerobic. It was positive for oxidase, catalase and β-galactosidase production but negative for urease, amylase and gelatinase. Strain RLAHU4B grew in the presence of 5 % NaCl. MK-7 was the predominant menaquinone and -diaminopimelic acid was present in the peptidoglycan. anteiso-C, iso-C, iso-C and C were the major fatty acids. Major polar lipids of strain RLAHU4B were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unknown phospholipids, two unknown aminophospholipids and one unknown lipid. The DNA G+C content was 57.8 mol%. Strain RLAHU4B presented phenotypic differences from all recognized species of the genus . The phylogenetic, chemotaxonomic and phenotypic data indicated that strain RLAHU4B belongs to a novel species of the genus , for which the name sp. nov. is proposed, with strain RLAHU4B ( = LMG 27416 = CECT 8236) as the type strain.

Funding
This study was supported by the:
  • MINECO (Spanish Central Government) (Award AGL2010-17380)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.050849-0
2014-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/1/83.html?itemId=/content/journal/ijsem/10.1099/ijs.0.050849-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990 ). Basic local alignment search tool. . J Mol Biol 215, 403410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Ardley J. K., Parker M. A., De Meyer S. E., Trengove R. D., O’Hara G. W., Reeve W. G., Yates R. J., Dilworth M. J., Willems A., Howieson J. G. ( 2012 ). Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. . Int J Syst Evol Microbiol 62, 25792588. [View Article] [PubMed]
    [Google Scholar]
  3. Azo W. M., Lane G. P. F., Davies W. P., Cannon N. D. ( 2012 ). Bi-cropping white lupins (Lupinus albus L.) with cereals for wholecrop forage in organic farming: the effect of seed rate and harvest dates on crop yield and quality. . Biol Agric Hortic 28, 86100. [View Article]
    [Google Scholar]
  4. Cai F., Wang Y., Qi H., Dai J., Yu B., An H., Rahman E., Fang C. ( 2010 ). Cohnella luojiensis sp. nov., isolated from soil of a Euphrates poplar forest. . Int J Syst Evol Microbiol 60, 16051608. [View Article] [PubMed]
    [Google Scholar]
  5. Chun J., Goodfellow M. ( 1995 ). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. . Int J Syst Bacteriol 45, 240245. [View Article] [PubMed]
    [Google Scholar]
  6. Claus D., Berkeley R. C. W. ( 1986 ). Genus Bacillus Cohn 1872, 174AL . . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 11051139. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. . Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  7. De Meyer S. E., Willems A. ( 2012 ). Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. . Int J Syst Evol Microbiol 62, 25052510. [View Article] [PubMed]
    [Google Scholar]
  8. Doetsch R. N. ( 1981 ). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 2133. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  9. García-Fraile P., Velázquez E., Mateos P. F., Martínez-Molina E., Rivas R. ( 2008 ). Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella . . Int J Syst Evol Microbiol 58, 18551859. [View Article] [PubMed]
    [Google Scholar]
  10. Jiang F., Dai J., Wang Y., Xue X., Xu M., Li W., Fang C., Peng F. ( 2012 ). Cohnella arctica sp. nov., isolated from Arctic tundra soil. . Int J Syst Evol Microbiol 62, 817821. [View Article] [PubMed]
    [Google Scholar]
  11. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H.-J., Tindall B. J. ( 2006 ). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56, 781786. [View Article] [PubMed]
    [Google Scholar]
  12. Khianngam S., Tanasupawat S., Akaracharanya A., Kim K. K., Lee K. C., Lee J. S. ( 2012 ). Cohnella cellulosilytica sp. nov., isolated from buffalo faeces. . Int J Syst Evol Microbiol 62, 19211925. [View Article] [PubMed]
    [Google Scholar]
  13. Kim S. J., Weon H. Y., Kim Y. S., Kwon S. W. ( 2011 ). Cohnella soli sp. nov. and Cohnella suwonensis sp. nov. isolated from soil samples in Korea. . J Microbiol 49, 10331038. [View Article] [PubMed]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  15. Kimura M. ( 1980 ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16, 111120. [View Article] [PubMed]
    [Google Scholar]
  16. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. et al. ( 2009 ). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59, 21142121. [View Article] [PubMed]
    [Google Scholar]
  17. Mandel M., Marmur J. ( 1968 ). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12B, 195206. [View Article]
    [Google Scholar]
  18. Rhuland L. E., Work E., Denman R. F., Hoare D. S. ( 1955 ). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. . J Am Chem Soc 77, 48444846. [View Article]
    [Google Scholar]
  19. Rivas R., García-Fraile P., Mateos P. F., Martínez-Molina E., Velázquez E. ( 2007 ). Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera . . Lett Appl Microbiol 44, 181187. [View Article] [PubMed]
    [Google Scholar]
  20. Rogers J. S., Swofford D. L. ( 1998 ). A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. . Syst Biol 47, 7789. [View Article] [PubMed]
    [Google Scholar]
  21. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  22. Schumann P. ( 2011 ). Peptidoglycan structure. . Methods Microbiol 38, 101129. [View Article]
    [Google Scholar]
  23. Sierra G. ( 1957 ). A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. . Antonie van Leeuwenhoek 23, 1522. [View Article] [PubMed]
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997 ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25, 48764882. [View Article] [PubMed]
    [Google Scholar]
  26. Tindall B. J. ( 1990 ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66, 199202. [View Article]
    [Google Scholar]
  27. Trujillo M. E., Kroppenstedt R. M., Fernández-Molinero C., Schumann P., Martínez-Molina E. ( 2007 ). Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius . . Int J Syst Evol Microbiol 57, 27992804. [View Article] [PubMed]
    [Google Scholar]
  28. Trujillo M. E., Alonso-Vega P., Rodríguez R., Carro L., Cerda E., Alonso P., Martínez-Molina E. ( 2010 ). The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius . . ISME J 4, 12651281. [View Article] [PubMed]
    [Google Scholar]
  29. Velázquez E., Valverde A., Rivas R., Gomis V., Peix A., Gantois I., Igual J. M., León-Barrios M., Willems A. et al. ( 2010 ). Strains nodulating Lupinus albus on different continents belong to several new chromosomal and symbiotic lineages within Bradyrhizobium . . Antonie van Leeuwenhoek 97, 363376. [View Article] [PubMed]
    [Google Scholar]
  30. Vincent J. M. ( 1970 ). The cultivation, isolation and maintenance of rhizobia. . In A Manual for the Practical Study of Root-Nodule Bacteria, pp. 113. Edited by Vincent J. M. . Oxford:: Blackwell Scientific;.
    [Google Scholar]
  31. Wolko B., Clements J. C., Naganowska B., Nelson M. N., Yang H. ( 2011 ). Lupinus. . In Wild Crop Relatives: Genomic and Breeding Resources, pp. 153206. Edited by Kole C. . Berlin, Heidelberg:: Springer;. [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.050849-0
Loading
/content/journal/ijsem/10.1099/ijs.0.050849-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error