1887

Abstract

A Gram-stain negative, rod-shaped, non-motile, non-spore-forming and aerobic bacterial strain, designated HL-25, was isolated and characterized in a taxonomic study using a polyphasic approach. Comparative analysis of the 16S rRNA gene sequences showed that the isolate constituted a distinct branch within the genus , showing the highest level of 16S rRNA gene sequence similarity to HU1-GD12 (96.6 %). The major fatty acids (>10 %) of strain HL-25 were Cω7, C, summed feature 3 (comprising Cω7 and/or Cω6) and C. The major cellular hydroxy fatty acid was C 2-OH. The major isoprenoid quinone was Q-10 and the DNA G+C content was 63.8 mol%. The polar lipid profile consisted of a mixture of sphingoglycolipid, phosphatidylglycerol, phosphatidylethanolamine, phosphatidyldimethylethanolamine, diphosphatidylglycerol, an uncharacterized glycolipid, an uncharacterized aminophospholipid and four uncharacterized phospholipids. The polyamine pattern of strain HL-25 contained spermidine and putrescine. On the basis of these genotypic, chemotaxonomic and phenotypic data, strain HL-25 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is HL-25 ( = BCRC 80413 = KCTC 23953).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.051219-0
2013-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/9/3444.html?itemId=/content/journal/ijsem/10.1099/ijs.0.051219-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kudo Y., Oyaizu H. ( 1997 ). The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. . Int J Syst Bacteriol 47, 249251. [View Article] [PubMed]
    [Google Scholar]
  2. Baek S. H., Lim J. H., Lee S. T. ( 2010 ). Sphingobium vulgare sp. nov., isolated from freshwater sediment. . Int J Syst Evol Microbiol 60, 24732477. [View Article] [PubMed]
    [Google Scholar]
  3. Beveridge T. J., Lawrence J. R., Murray R. G. E. ( 2007 ). Sampling and staining for light microscopy. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 1933. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  4. Bowman J. P. ( 2000 ). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50, 18611868.[PubMed]
    [Google Scholar]
  5. Breznak J. A., Costilow R. N. ( 2007 ). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 309329. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  6. Busse H.-J., Auling G. ( 1988 ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11, 18. [View Article]
    [Google Scholar]
  7. Busse H.-J., Bunka S., Hensel A., Lubitz W. ( 1997 ). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47, 698708. [View Article]
    [Google Scholar]
  8. Chang S. C., Wang J. T., Vandamme P., Hwang J. H., Chang P. S., Chen W. M. ( 2004 ). Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. . Syst Appl Microbiol 27, 4349. [View Article] [PubMed]
    [Google Scholar]
  9. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P. ( 2001 ). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. . Int J Syst Evol Microbiol 51, 17291735. [View Article] [PubMed]
    [Google Scholar]
  10. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. & other authors ( 2009 ). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37 (Database issue), D141D145. [View Article] [PubMed]
    [Google Scholar]
  11. Collins M. D. ( 1994 ). Isoprenoid quinones. . In Chemical Methods in Prokaryotic Systematics, pp. 265309. Edited by Goodfellow M., O’Donnell A. G. . Chichester:: Wiley;.
    [Google Scholar]
  12. Embley T. M., Wait R. ( 1994 ). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121161. Edited by Goodfellow M., O’Donnell A. G. . Chichester:: Wiley;.
    [Google Scholar]
  13. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  14. Felsenstein J. ( 1993 ). phylip (phylogeny inference package), version 3.5c. . Distributed by the author. Department of Genome Sciences, University of Washington;, Seattle, USA:.
    [Google Scholar]
  15. Hall T. A. ( 1999 ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41, 9598.
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  17. Kimura M. ( 1983 ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [View Article]
    [Google Scholar]
  18. Kluge A. G., Farris F. S. ( 1969 ). Quantitative phyletics and the evolution of anurans. . Syst Zool 18, 132. [View Article]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [View Article]
    [Google Scholar]
  20. Nokhal T.-H., Schlegel H. G. ( 1983 ). Taxonomic study of Paracoccus denitrijicans . . Int J Syst Bacteriol 33, 2637. [View Article]
    [Google Scholar]
  21. Powers E. M. ( 1995 ). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. . Appl Environ Microbiol 61, 37563758.[PubMed]
    [Google Scholar]
  22. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  23. Sasser M. ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids. Newark, DE:: MIDI Inc.;
    [Google Scholar]
  24. Schlegel H. G., Lafferty R., Krauss I. ( 1970 ). The isolation of mutants not accumulating poly-β-hydroxybutyric acid. . Arch Mikrobiol 71, 283294. [View Article] [PubMed]
    [Google Scholar]
  25. Spiekermann P., Rehm B. H. A., Kalscheuer R., Baumeister D., Steinbüchel A. ( 1999 ). A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. . Arch Microbiol 171, 7380. [View Article] [PubMed]
    [Google Scholar]
  26. Takeuchi M., Hamana K., Hiraishi A. ( 2001 ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51, 14051417.[PubMed]
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997 ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25, 48764882. [View Article] [PubMed]
    [Google Scholar]
  29. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R. ( 2007 ). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 330393. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  30. Wen C. M., Tseng C. S., Cheng C. Y., Li Y. K. ( 2002 ). Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. . Biotechnol Appl Biochem 35, 213219. [View Article] [PubMed]
    [Google Scholar]
  31. Wittich R. M., Busse H. J., Kämpfer P., Tiirola M., Wieser M., Macedo A. J., Abraham W. R. ( 2007 ). Sphingobium aromaticiconvertens sp. nov., a xenobiotic-compound-degrading bacterium from polluted river sediment. . Int J Syst Evol Microbiol 57, 306310. [View Article] [PubMed]
    [Google Scholar]
  32. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. ( 1990 ). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . . Microbiol Immunol 34, 99119.[PubMed] [CrossRef]
    [Google Scholar]
  33. Young C. C., Arun A. B., Kämpfer P., Busse H. J., Lai W. A., Chen W. M., Shen F. T., Rekha P. D. ( 2008 ). Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. . Int J Syst Evol Microbiol 58, 18011806. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.051219-0
Loading
/content/journal/ijsem/10.1099/ijs.0.051219-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error