1887

Abstract

A bacterial strain, designated UTM-3, isolated from the rhizosphere soil of (cempedak) in Malaysia was studied to determine its taxonomic position. Cells were Gram-stain-negative, non-spore-forming rods, devoid of flagella and gliding motility, that formed yellow-pigmented colonies on nutrient agar and contained MK-6 as the predominant menaquinone. Comparative analysis of the 16S rRNA gene sequence of strain UTM-3 with those of the most closely related species showed that the strain constituted a distinct phyletic line within the genus with the highest sequence similarities to NCTC 11390, 687B-08, 1084-08, CC-VM-7, 701B-08, GIMN1.005, NCTC 13530, NCTC 13529, LMG 27808, R4-1A, CW-E2, CW9, CCUG 52546, NBRC 14944, CCUG 14555, JS17-8, H8 and LMG 18212. The major whole-cell fatty acids were iso-C and iso-Cω9, followed by summed feature 4 (iso-C 2-OH and/or Cω7) and iso-C 3-OH, and the polar lipid profile consisted of phosphatidylethanolamine and several unknown lipids. The DNA G+C content strain UTM-3 was 34.8 mol%. On the basis of the phenotypic and phylogenetic evidence, it is concluded that the isolate represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is UTM-3 ( = CECT 8497 = KCTC 32509).

Funding
This study was supported by the:
  • Research University grants (Award Q.J 130000.2526.03H83 and Q.J 130000.2526.02H84)
  • Ministry of Agriculture (MoA), Malaysia (Award TF0310F080)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063594-0
2014-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3153.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063594-0&mimeType=html&fmt=ahah

References

  1. Bernardet J. F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002 ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52, 10491070. [View Article] [PubMed]
    [Google Scholar]
  2. Bernardet J. F., Bruun B., Hugo C. ( 2006 ). The genera Chryseobacterium and Elizabethkingia . . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 638676. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. . New York:: Springer;. [View Article]
    [Google Scholar]
  3. Bowman J. P. ( 2000 ). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50, 18611868.[PubMed]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. ( 1977 ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81, 461466. [View Article] [PubMed]
    [Google Scholar]
  5. Chaudhari P. N., Wani K. S., Chaudhari B. L., Chincholkar S. B. ( 2009 ). Characteristics of sulfobacin A from a soil isolate Chryseobacterium gleum . . Appl Biochem Biotechnol 158, 231241. [View Article] [PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. ( 1970 ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12, 133142. [View Article] [PubMed]
    [Google Scholar]
  7. Escara J. F., Hutton J. R. ( 1980 ). Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. . Biopolymers 19, 13151327. [View Article] [PubMed]
    [Google Scholar]
  8. Huss V. A., Festl H., Schleifer K. H. ( 1983 ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4, 184192. [View Article] [PubMed]
    [Google Scholar]
  9. Kämpfer P., Steiof M., Dott W. ( 1991 ). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21, 227251. [View Article] [PubMed]
    [Google Scholar]
  10. Kim H.-S., Sang M. K., Jung H. W., Jeun Y.-C., Myung I.-S., Kim K. D. ( 2012 ). Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent of Phytophthora blight of pepper. . Crop Prot 32, 129137. [View Article]
    [Google Scholar]
  11. Krause M. S., Madden L. V., Hoitink H. A. J. ( 2001 ). Effect of potting mix microbial carrying capacity on biological control of rhizoctonia damping-off of radish and rhizoctonia crown and root rot of poinsettia. . Phytopathology 91, 11161123. [View Article] [PubMed]
    [Google Scholar]
  12. Milne I., Lindner D., Bayer M., Husmeier D., McGuire G., Marshall D. F., Wright F. ( 2009 ). TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. . Bioinformatics 25, 126127. [View Article] [PubMed]
    [Google Scholar]
  13. Miranda-Tello E., Fardeau M. L., Thomas P., Ramirez F., Casalot L., Cayol J. L., Garcia J. L., Ollivier B. ( 2004 ). Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. . Int J Syst Evol Microbiol 54, 169174. [View Article] [PubMed]
    [Google Scholar]
  14. Posada D., Crandall K. A. ( 1998 ). modeltest: testing the model of DNA substitution. . Bioinformatics 14, 817818. [View Article] [PubMed]
    [Google Scholar]
  15. Ramos Solano B., Barriuso Maicas J., Pereyra de la Iglesia M. T., Domenech J., Gutiérrez Mañero F. J. ( 2008 ). Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. . Phytopathology 98, 451457. [View Article] [PubMed]
    [Google Scholar]
  16. Scheuplein R. J., Mizutani A., Yamaguchi S. ( 2007 ). Studies on the non-pathogenicity of Chryseobacterium proteolyticum and on the safety of the enzyme: protein-glutaminase. . Regul Toxicol Pharmacol 49, 7989. [View Article] [PubMed]
    [Google Scholar]
  17. Shin D. S., Park M. S., Jung S., Lee M. S., Lee K. H., Bae K. S., Kim S. B. ( 2007 ). Plant growth-promoting potential of endophytic bacteria isolated from roots of coastal sand dune plants. . J Microbiol Biotechnol 17, 13611368.[PubMed]
    [Google Scholar]
  18. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [View Article]
    [Google Scholar]
  19. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. ( 2013 ). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30, 27252729. [View Article] [PubMed]
    [Google Scholar]
  20. Vandamme P., Bernardet J.-F., Segers P., Kersters K., Holmes B. ( 1994 ). New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev.. Int J Syst Bacteriol 44, 827831. [View Article]
    [Google Scholar]
  21. Vaneechoutte M., Kämpfer P., De Baere T., Avesani V., Janssens M., Wauters G. ( 2007 ). Chryseobacterium hominis sp. nov., to accommodate clinical isolates biochemically similar to CDC groups II-h and II-c. . Int J Syst Evol Microbiol 57, 26232628. [View Article] [PubMed]
    [Google Scholar]
  22. Ventosa A., Marquez M. C., Kocur M., Tindall B. J. ( 1993 ). Comparative study of “Micrococcus sp.” strains CCM 168 and CCM 1405 and members of the genus Salinicoccus . . Int J Syst Bacteriol 43, 245248. [View Article] [PubMed]
    [Google Scholar]
  23. Wang S. L., Yang C. H., Liang T. W., Yen Y. H. ( 2008 ). Optimization of conditions for protease production by Chryseobacterium taeanense TKU001. . Bioresour Technol 99, 37003707. [View Article] [PubMed]
    [Google Scholar]
  24. Wang S.-L., Liang Y.-C., Liang T.-W. ( 2011 ). Purification and characterization of a novel alkali-stable α-amylase from Chryseobacterium taeanense TKU001, and application in antioxidant and prebiotic. . Process Biochem 46, 745750. [View Article]
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [View Article]
    [Google Scholar]
  26. Yoon J., Jang J. H., Kasai H. ( 2013 ). Spongiimonas flava gen. nov., sp. nov., a new member of the family Flavobacteriaceae isolated from an unidentified marine sponge. . Antonie van Leeuwenhoek 103, 625633. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063594-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063594-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error