1887

Abstract

A Gram-stain-negative, coccoid- or short-rod-shaped and non-gliding bacterial strain, designated CDM-7, was isolated from the zone where the ocean meets a freshwater spring at Jeju island, South Korea, and was subjected to a polyphasic taxonomic study. Strain CDM-7 grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2–3 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain CDM-7 falls within the clade comprising species of the genus clustering with the type strain of , with which it exhibited the highest 16S rRNA gene sequence similarity value (98.4 %). The 16S rRNA gene sequence similarity values between strain CDM-7 and the type strains of and were 97.1 and 96.2 %, respectively. The genomic DNA G+C content was 66.8 mol% and the mean DNA–DNA relatedness values between strain CDM-7 and the type strains of and were 15.6±2.5 and 6.7±3.2 %, respectively. Strain CDM-7 contained Q-10 as the predominant ubiquinone and summed feature 8 (Cω7 and/or Cω6) as the major fatty acid. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid, an unidentified phospholipid and an unidentified lipid. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain CDM-7 is distinguishable from other species of the genus . On the basis of the data presented, strain CDM-7 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CDM-7 ( = KCTC 42108 = CECT 8626).

Funding
This study was supported by the:
  • National Institute of Biological Resources
  • Ministry of Environment
  • Ministry of Science, ICT & Future Planning (MSIP) of the Republic of Korea
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.068767-0
2014-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/12/4191.html?itemId=/content/journal/ijsem/10.1099/ijs.0.068767-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. (editors) ( 1993 ). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [View Article]
    [Google Scholar]
  2. Bowman J. P. ( 2000 ). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50, 18611868.[PubMed]
    [Google Scholar]
  3. Bruns A., Rohde M., Berthe-Corti L. ( 2001 ). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. . Int J Syst Evol Microbiol 51, 19972006. [View Article] [PubMed]
    [Google Scholar]
  4. Cho J. C., Giovannoni S. J. ( 2006 ). Pelagibaca bermudensis gen. nov., sp. nov., a novel marine bacterium within the Roseobacter clade in the order Rhodobacterales . . Int J Syst Evol Microbiol 56, 855859. [View Article] [PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989 ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39, 224229. [View Article]
    [Google Scholar]
  6. Foesel B. U., Drake H. L., Schramm A. ( 2011 ). Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture. . Syst Appl Microbiol 34, 498502. [View Article] [PubMed]
    [Google Scholar]
  7. Jiang L., Xu H., Shao Z., Long M. ( 2014 ). Defluviimonas indica sp. nov., a marine bacterium isolated from a deep-sea hydrothermal vent environment. . Int J Syst Evol Microbiol 64, 20842088. [View Article] [PubMed]
    [Google Scholar]
  8. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  9. Komagata K., Suzuki K. ( 1987 ). Lipids and cell-wall analysis in bacterial systematics. . Methods Microbiol 19, 161207. [View Article]
    [Google Scholar]
  10. Lányí B. ( 1987 ). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19, 167. [View Article]
    [Google Scholar]
  11. Leifson E. ( 1963 ). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85, 11831184.[PubMed]
    [Google Scholar]
  12. Math R. K., Jin H. M., Jeong S. H., Jeon C. O. ( 2013 ). Defluviimonas aestuarii sp. nov., a marine bacterium isolated from a tidal flat, and emended description of the genus Defluviimonas Foesel et al. 2011. . Int J Syst Evol Microbiol 63, 28952900. [View Article] [PubMed]
    [Google Scholar]
  13. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. ( 1977 ). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27, 104117. [View Article]
    [Google Scholar]
  14. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. ( 1984 ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2, 233241. [View Article]
    [Google Scholar]
  15. Sasser M. ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
    [Google Scholar]
  16. Stackebrandt E., Goebel B. M. ( 1994 ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44, 846849. [View Article]
    [Google Scholar]
  17. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [View Article]
    [Google Scholar]
  18. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [View Article]
    [Google Scholar]
  19. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. ( 1996 ). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. . Int J Syst Bacteriol 46, 502505. [View Article]
    [Google Scholar]
  20. Yoon J.-H., Lee S. T., Park Y.-H. ( 1998 ). Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. . Int J Syst Bacteriol 48, 187194. [View Article] [PubMed]
    [Google Scholar]
  21. Yoon J.-H., Kang K. H., Park Y.-H. ( 2003 ). Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. . Int J Syst Evol Microbiol 53, 449454. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.068767-0
Loading
/content/journal/ijsem/10.1099/ijs.0.068767-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error