1887

Abstract

A novel anaerobic, thermophilic and heterotrophic bacterium, designated strain DV1140, was isolated from a deep-sea hydrothermal vent sample from the Mid-Atlantic Ridge. The cells were non-motile straight rods, 1·8 μm long and 0·4 μm wide, surrounded by an outer sheath-like structure (toga). They grew at 45–80 °C (optimum 65 °C), pH 5·0–9·0 (optimum pH 6·0) and at sea salt concentrations of 20–60 g l (optimum 30 g l). Strain DV1140 was able to ferment yeast extract, peptone, brain heart infusion, gelatin, starch, galactose, arabinose, glucose, trehalose and cellobiose. The fermentation products identified on glucose in the presence of yeast extract and peptone were acetate, isovalerate and hydrogen. The G+C content of the genomic DNA was 33 mol%. Phylogenetic analysis of the 16S rRNA gene sequence (GenBank accession number AJ577471) located the strain within the genus in the bacterial domain. On the basis of 16S rRNA gene sequence comparisons, and physiological and biochemical characteristics, the isolate represents a novel species, for which the name sp. nov. is proposed. The type strain is DV1140 (=CIP 108053=DSM 15807).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63069-0
2004-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs541953.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63069-0&mimeType=html&fmt=ahah

References

  1. Alain K., Pignet P., Zbinden M. 8 other authors 2002; Caminicella sporogenes gen. nov., sp. nov., a novel thermophilic spore-forming bacterium isolated from an East-Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1621–1628 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Antoine E., Cilia V., Meunier J.-R., Guézennec J., Lesongeur F., Barbier G. 1997; Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging the Thermotogales , isolated from deep-sea hydrothermal vent in the southern Pacific ocean. Int J Syst Bacteriol 47:1118–1123 [CrossRef]
    [Google Scholar]
  4. Blumentals I. I., Itoh M., Olson G. J., Kelly R. M. 1990; Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyrococcus furiosus . Appl Environ Microbiol 56:1255–1262
    [Google Scholar]
  5. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [CrossRef]
    [Google Scholar]
  6. Fardeau M.-L., Cayol J.-L., Magot M., Ollivier B. 1993; H2 oxidation in the presence of thiosulfate, by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol Lett 113:327–332 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 30:783–791
    [Google Scholar]
  9. Galtier N., Gouy M., Gautier C. 1996; seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548
    [Google Scholar]
  10. Gauthier M. J. 1976; Alteromonas rubra sp. nov., a new marine antibiotic-producing bacterium. Int J Syst Bacteriol 26:459–466 [CrossRef]
    [Google Scholar]
  11. Hofstad T. 1980; Evaluation of the API ZYM system for identification of Bacteroides and Fusobacterium species. Med Microbiol Immunol 168:173–177 [CrossRef]
    [Google Scholar]
  12. Huber R., Woese C. R., Langworthy T. A., Fricke H., Stetter K. O. 1989; Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the ‘ Thermotogales ’. Syst Appl Microbiol 12:32–37 [CrossRef]
    [Google Scholar]
  13. Kilian M. 1978; Rapid identification of Actinomycetaceae and related bacteria. J Clin Microbiol 8:127–133
    [Google Scholar]
  14. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  15. L'Haridon S., Miroshnichenko M., Hippe H., Fardeau M., Bonch-Osmolovskaya E., Stackebrandt E., Jeanthon C. 2001; Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 51:1327–1334
    [Google Scholar]
  16. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  17. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758
    [Google Scholar]
  18. Raguénès G., Pignet P., Gauthier G., Peres A., Christen R., Rougeaux H., Barbier G., Guézennec J. 1996; Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis , and preliminary characterization of the polymer. Appl Environ Microbiol 62:67–73
    [Google Scholar]
  19. Raguénès G., Christen R., Guézennec J., Pignet P., Barbier G. 1997; Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychete annelid, Alvinella pompejana . Int J Syst Bacteriol 47:989–995 [CrossRef]
    [Google Scholar]
  20. Saitou M., Nei M. 1987; The neighbor-joining method : a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  21. Takai K., Horikoshi K. 2000; Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17 [CrossRef]
    [Google Scholar]
  22. Tharagonnet D., Sisson P. R., Roxby C. M., Ingham H. R., Selkon J. B. 1977; The API ZYM system in the identification of Gram-negative anaerobes. J Clin Pathol 30:505–509 [CrossRef]
    [Google Scholar]
  23. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  24. Urios L., Cueff V., Pignet P., Barbier G. 2004; Tepidibacter formicigenes sp. nov., a novel spore-forming bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 54:439–443 [CrossRef]
    [Google Scholar]
  25. Van Ooteghem S. A., Beer S. K., Yue P. C. 2001; Hydrogen production by the thermophilic bacterium Thermotoga neapolitana . In Proceedings of the 2001 DOE Hydrogen Program Review document no. NREL/CP-570-30535 Golden, CO: National Renewable Energy Laboratory;
    [Google Scholar]
  26. Wery N., Lesongeur F., Pignet P., Derennes V., Cambon-Bonavita M., Godfroy A., Barbier G. 2001a; Marinitoga camini gen. nov., sp. nov. a rod-shaped bacterium belonging to the order Thermotogales , isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:495–504
    [Google Scholar]
  27. Wery N., Moricet J., Cueff V., Jean J., Pignet P., Lesongeur F., Cambon-Bonavita M., Barbier G. 2001b; Caloranaerobacter azorensis gen. nov., sp. nov. an anaerobic thermophilic bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:1789–1796 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63069-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63069-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error