1887

Abstract

Three Gram-negative, non-motile, non-spore-forming, slightly halophilic rods (strains SW-110, SW-116 and SW-140) were isolated from sea water of a tidal flat of the Yellow Sea in Korea and subjected to a polyphasic taxonomic study. The three isolates did not produce bacteriochlorophyll and were characterized chemotaxonomically by having ubiquinone-10 as the predominant respiratory lipoquinone and C 7 and C 6 as the major fatty acids. The DNA G+C content of the three isolates was between 62·2 and 62·9 mol%. Strains SW-110, SW-116 and SW-140 showed no difference in their 16S rRNA gene sequences, and their mean level of DNA–DNA relatedness was 94·8 %. Phylogenetic analyses based on 16S rRNA gene sequences showed that the three strains form a distinct phylogenetic lineage within the cluster comprising species. Similarities between the 16S rRNA gene sequences of strains SW-110, SW-116 and SW-140 and the type strains of species ranged from 98·4 % (with ) to 97·7 % (with ). Levels of DNA–DNA relatedness between strains SW-110, SW-116 and SW-140 and the type strains of all recognized species were in the range 5·3–12·7 %. On the basis of polyphasic taxonomic data, strains SW-110, SW-116 and SW-140 were classified as a novel species, for which the name sp. nov. is proposed. The type strain is SW-110 (=KCCM 41818=JCM 12189).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63100-0
2004-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs541981.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63100-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  2. Bruns A., Rohde M., Berthe-Corti L. 2001; Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51:1997–2006 [CrossRef]
    [Google Scholar]
  3. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  4. Denner E. B. M., Vybiral D., Koblížek M., Kämpfer P., Busse H.-J., Velimirov B. 2002; Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. Int J Syst Evol Microbiol 52:1655–1661 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1993 phylip: Phylogenetic Inference Package, version 3.5. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  8. Fuerst J. A., Hawkins J. A., Holmes A., Sly L. I., Moore C. J., Stackebrandt E. 1993; Porphyrobacter neustonensis gen. nov., sp. nov. an aerobic bacteriochlorophyll-synthesizing budding bacterium from fresh water. Int J Syst Bacteriol 43:125–134 [CrossRef]
    [Google Scholar]
  9. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  10. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  11. Komagata K., Suzuki K. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–203
    [Google Scholar]
  12. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  13. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  14. Levring T. 1946; Some culture experiments with Ulva and artificial seawater. K Fysiogr Sallsk Lund Forh 16:45–56
    [Google Scholar]
  15. Rainey F. A., Silva J., Nobre M. F., Silva M. T., da Costa M. S. 2003; Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a -containing species. Int J Syst Evol Microbiol 53:35–41 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc;
    [Google Scholar]
  18. Shiba T., Simidu U. 1982; Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a . Int J Syst Bacteriol 32:211–217 [CrossRef]
    [Google Scholar]
  19. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  20. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  21. Vybiral D., Denner E. B. M., Haller C. M., Busse H.-J., Witte A., Höfle M. G., Velimirov B. 1999; Polyphasic classification of 0·2 μm filterable bacteria from the Western Mediterranean Sea. Syst Appl Microbiol 22:635–646 [CrossRef]
    [Google Scholar]
  22. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  23. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. 1996; Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46:502–505 [CrossRef]
    [Google Scholar]
  24. Yoon J.-H., Lee S. T., Park Y.-H. 1998; Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48:187–194 [CrossRef]
    [Google Scholar]
  25. Yoon J.-H., Kim H., Kim I.-G., Kang K. H., Park Y.-H. 2003; Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 53:1169–1174 [CrossRef]
    [Google Scholar]
  26. Yurkov V., Stackebrandt E., Holmes A. 7 other authors 1994; Phylogenetic positions of novel aerobic, bacteriochlorophyll a -containing bacteria and description of Roseococcus thiosulfatophilus gen.nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63100-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63100-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error