1887

Abstract

An alkene-degrading, sulfate-reducing bacterium, strain PF2803, was isolated from oil-polluted sediments (Fos Harbour, France). The cells were found to be Gram-negative, non-sporulating, non-motile and to have a slightly curved rod shape. Optimum growth occurred at 1 % (w/v) NaCl, pH 6·8 and 28–30 °C. Strain PF2803 oxidized alkenes (from C to C). The G+C content of the genomic DNA was 57·8 mol% (HPLC). On the basis of 16S rRNA gene sequence analyses, strain PF2803 belongs to the family ‘’ in the class ‘’, with as its closest relative (99·6 % identity). Comparative sequence analyses of the dissimilatory sulfite reductase () gene supported the affiliation of strain PF2803 to the genus . DNA–DNA hybridization with its closest taxon demonstrated 48·4 % similarity. On the basis of the results of physiological and genetic analyses, strain PF2803 is identified as a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PF2803 (=DSM 16219=ATCC BAA-924).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63104-0
2004-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541639.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63104-0&mimeType=html&fmt=ahah

References

  1. Aeckersberg F., Bak F., Widdel F. 1991; Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14 [CrossRef]
    [Google Scholar]
  2. Aeckersberg F., Rainey F. A., Widdel F. 1998; Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369 [CrossRef]
    [Google Scholar]
  3. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  4. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458 [CrossRef]
    [Google Scholar]
  5. Cravo-Laureau C., Matheron R., Cayol J.-L., Joulian C., Hirschler-Réa A. 2004; Desulfatibacillum aliphaticivorans gen. nov., sp. nov. an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 54:77–83 [CrossRef]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  7. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  8. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  9. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  10. Pfennig N., Trüper H. G. 1981; Isolation of members of the families Chromatiaceae and Chlorobiaceae. In The Prokaryotes vol. 1 pp  279–289 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer;
    [Google Scholar]
  11. Pfennig N., Widdel F., Trüper H. G. 1981; The dissimilatory sulfate-reducing bacteria. In The Prokaryotes vol 1 pp  926–940 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer;
    [Google Scholar]
  12. Rueter P., Rabus R., Wilkes H., Aeckersberg F., Rainey F. A., Jannash H. W., Widdel F. 1994; Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–457 [CrossRef]
    [Google Scholar]
  13. So C. M., Young L. Y. 1999; Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65:2969–2976
    [Google Scholar]
  14. Spormann A. M., Widdel F. 2000; Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105 [CrossRef]
    [Google Scholar]
  15. Tabatabai M. A. 1974; Determination of sulfate in water samples. Sulphur Instit J 10:11–13
    [Google Scholar]
  16. Vogel A. I. 1961 A Text Book of Quantitative Inorganic Analysis London: Longman;
    [Google Scholar]
  17. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  18. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes vol 4 pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63104-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63104-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error