1887

Abstract

A psychrotolerant, obligately alkaliphilic bacterium, IDR2-2, which is able to reduce indigo dye was isolated from a fermented polygonum indigo ( Lour.) produced in Date, Hokkaido, using a traditional Japanese method. The isolate grew at pH 9–12 but not at pH 7–8. It was a Gram-positive, facultatively anaerobic, straight rod-shaped bacterium with peritrichous flagella. The isolate grew in 0–17 % (w/v) NaCl but not at NaCl concentrations higher than 18 % (w/v). Its major cellular fatty acids were C, C, C9 and C9, and its DNA G+C content was 40·6 mol%. -lactic acid was the major end-product from -glucose. No quinones could be detected. The peptidoglycan type was A4, Orn–-Glu. A phylogenetic analysis based on 16S rRNA gene sequence data indicated that strain IDR2-2 is a member of the genus . DNA–DNA hybridization revealed low relatedness (less than 25 %) between the isolate and two phylogenetically related strains, and . On the basis of phenotypic characteristics, phylogenetic data and DNA–DNA relatedness data, the isolate merits classification as a novel species, for which the name sp. nov. is proposed. The type strain is IDR2-2 (=JCM 12281=NCIMB 13981).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63130-0
2004-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542379.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63130-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. (editors) 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  2. Belduz A. O., Dulger S., Demirbag Z. 2003; Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 53:1315–1320 [CrossRef]
    [Google Scholar]
  3. Brosius J., Palmer J. L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  4. Duckworth A. W., Grant W. D., Jones B. E., Steenbergen R. 1996; Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Lett 19:181–191 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Horikoshi K. 1991 Microorganisms in Alkaline Environments Weinheim: VCH;
    [Google Scholar]
  7. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  8. Ishikawa M., Nakajima K., Yanagi M., Yamamoto Y., Yamasato K. 2003; Marinilactibacillus psychrotolerans gen. nov. sp. nov. a halophilic and alkaliphilic marine lactic acid bacterium isolated from marine organisms in temperate and subtropical areas of Japan. Int J Syst Evol Microbiol 53711–720 [CrossRef]
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  10. Krulwich T. A., Guffanti A. A. 1989; Alkalophilic bacteria. Annu Rev Microbiol 43:435–463 [CrossRef]
    [Google Scholar]
  11. Krulwich T. A., Ito M., Guffanti A. A. 2001; The Na+-dependence of alkaliphily in Bacillus . Biochim Biophys Acta 1505158–168 [CrossRef]
    [Google Scholar]
  12. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  13. Ntougias S., Russell N. J. 2001; Alkalibacterium olivoapovliticus gen. nov. sp. nov. a new obligately alkaliphilic bacterium isolated from edible-olive wash waters. Int J Syst Evol Microbiol 511161–1170 [CrossRef]
    [Google Scholar]
  14. Okada S., Uchimura T., Kozaki M. 1992 Laboratory Manual for Lactic Acid Bacteria Tokyo: Asakura-shoten (in Japanese;
    [Google Scholar]
  15. Padden A. N., Dillon V. M., Edmonds J., Collins M. D., Alvarez N., John P. 1999; An indigo-reducing moderate thermophile from a woad vat, Clostridium isatidis sp. nov. Int J Syst Bacteriol 49:1025–1031 [CrossRef]
    [Google Scholar]
  16. Pikuta E., Lysenko A., Chuvilskaya N., Mendrock U., Hippe H., Suzina N., Nikitin D., Osipov G., Laurinavichius K. 2000; Anoxybacillus pushchinensis gen. nov., sp. nov. a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov. Int J Syst Evol Microbiol 50:2109–2117 [CrossRef]
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  18. Takahara Y., Tanabe O. 1960; Studies on the reduction of indigo in industrial fermentation vat (VII). J Ferment Technol 38:329–331
    [Google Scholar]
  19. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  20. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  21. Thongaram T., Kosono S., Ohkuma M., Hongoh Y., Kitada M., Yoshinaka T., Trakulnaleamsai S., Noparatnaraporn N., Kudo T. 2003; Gut of higher termites as a niche for alkaliphiles as shown by culture-based and culture-independent studies. Microb Environ 18:152–159 [CrossRef]
    [Google Scholar]
  22. Yumoto I. 2002; Bioenergetics of alkaliphilic Bacillus spp. J Biosci Bioeng 93:342–353 [CrossRef]
    [Google Scholar]
  23. Yumoto I. 2003; Electron transport system in alkaliphilic Bacillus spp. Recent Res Devel Bacteriol 1:131–149
    [Google Scholar]
  24. Yumoto I., Yamazaki K., Sawabe T., Nakano K., Kawasaki K., Ezura Y., Shinano H. 1998; Bacillus horti sp. nov., a new Gram-negative alkaliphilic bacillus. Int J Syst Bacteriol 48:565–571 [CrossRef]
    [Google Scholar]
  25. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K. 2001; Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355
    [Google Scholar]
  26. Yumoto I., Nakamura A., Iwata H., Kojima K., Kusumoto K., Nodasaka Y., Matsuyama H. 2002; Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63130-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63130-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error