1887

Abstract

gen. nov., sp. nov. is a moderately halophilic, exopolysaccharide-producing, Gram-negative rod isolated from a hypersaline habitat in Murcia in south-eastern Spain. The bacterium is chemoheterotrophic and strictly aerobic (i.e. unable to grow under anaerobic conditions either by fermentation or by nitrate or fumarate respiration). It does not synthesize bacteriochlorophyll . Catalase and phosphatase are positive. It does not produce acids from carbohydrates. It cannot grow with carbohydrates or amino acids as sole sources of carbon and energy. It grows best at 9–10 % w/v NaCl and requires the presence of Na but not Mg or K, although they do stimulate its growth somewhat when present. Its major fatty-acid component is 18 : 17 (78·0 %). The predominant respiratory lipoquinone found in strain A3 is ubiquinone with ten isoprene units. The G+C content is 64·5 mol%. Phylogenetic analyses strongly indicate that this strain forms a distinct line within a clade containing the genus in the subclass -. The similarity value with and is 94 %. In the light of the polyphasic evidence gathered in this study it is proposed that the isolate be classified as representing a new genus and species, gen. nov., sp. nov. The proposed type strain is strain A3 (=CECT 5855=LMG 22090=DSM 16094).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63166-0
2004-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541735.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63166-0&mimeType=html&fmt=ahah

References

  1. Allgaier M., Uphoff H., Feelske A., Wagner-Döbler I. 2003; Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69:5051–5059 [CrossRef]
    [Google Scholar]
  2. Argandoña M., Martínez-Checa F., Llamas I., Quesada E., Del Moral A. 2003; Megaplasmids in Gram-negative, moderately halophilic bacteria. FEMS Microbiol Lett 227:81–86 [CrossRef]
    [Google Scholar]
  3. Bouchotroch S., Quesada E., del Moral A., Llamas I., Béjar V. 2001; Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632 [CrossRef]
    [Google Scholar]
  4. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  5. Cohen-Bazire G., Sistrom W. R., Stanier R. Y. 1957; Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49:25–68 [CrossRef]
    [Google Scholar]
  6. Garrity G. M., Holt J. G. 2001; The road map to the Manual . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp  119–166 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  7. González J. M., Moran M. A. 1997; Numerical dominance of a group of marine bacteria in the α -subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63:4237–4242
    [Google Scholar]
  8. González J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997; Sagittula stellata gen. nov., sp. nov., a lignin-transforming bacterium from a coastal environment. Int J Syst Bacteriol 47:773–780 [CrossRef]
    [Google Scholar]
  9. Gosink J. J., Herwig R. P., Staley J. T. 1997; Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus , sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365 [CrossRef]
    [Google Scholar]
  10. Imhoff J. F., Madigan M. T. 2002; International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of phototrophic bacteria. Minutes of the meetings 28 August 2000; Barcelona, Spain. Int J Syst Evol Microbiol 52:2335–2336 [CrossRef]
    [Google Scholar]
  11. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  12. Kushner D. J., Kamekura M. 1988; Physiology of halophilic bacteria. In Halophilic Bacteria pp  109–138 Edited by Rodríguez-Valera F. Boca Raton, FL: CRC Press;
    [Google Scholar]
  13. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov. a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372 [CrossRef]
    [Google Scholar]
  14. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Schumann P., Hirsch P. 1999; Roseovarius tolerans gen. nov., sp. nov. a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho lake. Int J Syst Bacteriol 49:137–147 [CrossRef]
    [Google Scholar]
  15. Labrenz M., Tindall B. J., Lawson P. A., Collins M. D., Schumann P., Hirsch P. 2000; Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., α -3- Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int J Syst Evol Microbiol 50:303–313 [CrossRef]
    [Google Scholar]
  16. Lafay B., Ruimy R., Rausch de Traubenberg C., Breittmayer V., Gauthier M. J., Christen R. 1995; Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of the toxin-producing dinoflagellate Prorocentrum lima . Int J Syst Bacteriol 45:290–296 [CrossRef]
    [Google Scholar]
  17. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V. 2004a; Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737 [CrossRef]
    [Google Scholar]
  18. Martínez-Cánovas M. J., Béjar V., Martínez-Checa F., Quesada E. 2004b; Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Málaga, southern Spain. Int J Syst Evol Microbiol 54:1329–1332 [CrossRef]
    [Google Scholar]
  19. Martínez-Cánovas M. J., Quesada E., Martínez-Checa F., Béjar V. 2004c; A taxonomic study to establish the relationship between exopolysaccharide-producing bacterial strains living in diverse hypersaline habitats. Curr Microbiol 48:348–353 [CrossRef]
    [Google Scholar]
  20. Nishimura Y., Muroga Y., Saito S., Shiba T., Takamiya K., Shioi Y. 1994; DNA relatedness and chemotaxonomic feature of aerobic bacteriochlorophyll-containing bacteria isolated from coasts of Australia. J Gen Appl Microbiol 40:287–296 [CrossRef]
    [Google Scholar]
  21. Petursdottir S. K., Kristjansson J. K. 1997; Silicibacter lacuscaerulensis gen. nov. sp. nov. a mesophilic moderately halophilic bacterium characteristic of the Blue lagoon geothermal lake in Iceland. Extremophiles 1:94–99 [CrossRef]
    [Google Scholar]
  22. Pukall R., Buntefuß D., Frühling A., Rohde M., Kroppenstedt R. M., Burghardt J., Lebaron P, Bernard L, Stackebrandt E. 1999; Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the α - Proteobacteria . Int J Syst Bacteriol 49:513–519 [CrossRef]
    [Google Scholar]
  23. Quesada E., Valderrama M. J., Béjar V., Ventosa A., Gutierrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A. 1990; Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic nonmotile gram-negative rod. Int J Syst Bacteriol 40:261–267 [CrossRef]
    [Google Scholar]
  24. Quesada E., Béjar V., Calvo C. 1993; Exopolysaccharide production by Volcaniella eurihalina . Experientia 49:1037–1041 [CrossRef]
    [Google Scholar]
  25. Quesada E., Béjar V., Ferrer M. R. 8 other authors 2004; Moderately halophilic, exopolysaccharide-producing bacteria. In Halophilic Microorganisms pp  297–314 Edited by Ventosa A. Heidelberg: Springer;
    [Google Scholar]
  26. Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1981; Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7:235–243 [CrossRef]
    [Google Scholar]
  27. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239:487–491 [CrossRef]
    [Google Scholar]
  28. Schaefer J. K., Goodwin K. D., McDonald I. R., Murrell J. C., Oremland R. S. 2002; Leisingera methylohalidivorans gen. nov., sp. nov. a marine methylotroph that grows on methyl bromide. Int J Syst Evol Microbiol 52:851–859 [CrossRef]
    [Google Scholar]
  29. Shiba T. 1991; Roseobacter litoralis gen. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a . Syst Appl Microbiol 14:140–145 [CrossRef]
    [Google Scholar]
  30. Stackebrandt E., Fredricksen W., Garrity G. M. 10 other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  31. Suzuki T., Muroga Y., Takahama M., Nishimura Y. 1999; Roseivivax halodurans gen. nov., sp. nov. and Roseivivax halotolerans sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. Int J Syst Bacteriol 49:629–634 [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak K., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignments aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  33. Urbance J. W., Bratina B. J., Stoddard S. F., Schmidt T. M. 2001; Taxonomic characterization of Ketogulonigenium vulgare gen.nov., sp. nov. and Ketogulonigenium robustum sp. nov., which oxidize l-sorbose to 2-keto-l-gulonic acid. Int J Syst Evol Microbiol 51:1059–1070 [CrossRef]
    [Google Scholar]
  34. Ventosa A. editor 2004 Halophilic Microorganisms Heidelberg: Springer;
    [Google Scholar]
  35. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  36. Wagner-Döbler I., Rheims H., Felske A., Pukall R., Tindall B. J. 2003; Jannaschia helgolandensis gen. nov., sp. nov., a novel abundant member of the marine Roseobacter clade from the North Sea. Int J Syst Evol Microbiol 53:731–738 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63166-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63166-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error