1887

Abstract

Two bacterial strains, F23 and R22, have been isolated from hypersaline habitats in Málaga (S. Spain) and Murcia (E. Spain). The novel strains, similar to previously described species, are slightly curved rods, Gram-negative, chemo-organotrophic, strictly aerobic and motile by a single polar flagellum. Both strains produce catalase and oxidase. They hydrolyse aesculin, gelatin, casein, Tween 20, Tween 80 and DNA but not starch or tyrosine. The strains differ from the hitherto described species in their capacity to produce extracellular polysaccharides and their different patterns of carbon sources and antimicrobial susceptibility. They are moderate halophiles capable of growing in NaCl concentrations of 0·5 to 25 % w/v, the optimum being 3–5 % w/v. Cellular fatty acids are predominantly iso-branched. The main fatty acids in strain FP23 are 15 : 0 iso (26·75 %), 16 : 17 (11·33 %) and 16 : 0 (11·73 %) whilst 15 : 0 iso (24·69 %), 17 : 0 iso (12·92 %) and 17 : 19 (11·03 %) are predominant in strain R22. The DNA G+C composition is 46·0 mol% in strain FP23 and 48·7 mol% in strain R22. Phylogenetic analyses indicate conclusively that the two strains belong to the genus . DNA–DNA hybridization revealed that they represent novel species. In the light of the polyphasic evidence accumulated in this study, it is proposed that they be classified as novel species of the genus , with the names sp. nov. (type strain F23=CECT 5859=LMG 22169) and sp. nov. (type strain R22=CECT 5858=LMG 22170).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63172-0
2004-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541793.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63172-0&mimeType=html&fmt=ahah

References

  1. Bouchotroch S., Quesada E., del Moral A., Llamas I., Béjar V. 2001; Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632 [CrossRef]
    [Google Scholar]
  2. Brettar I., Christen R., Höfle M. G. 2003; Idiomarina baltica sp. nov., a marine bacterium with a high optimum growth temperature isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol 53:407–413 [CrossRef]
    [Google Scholar]
  3. Donachie S. P., Hou S., Gregory T. S., Malahoff A., Alam M. 2003; Idiomarina loihiensis sp. nov., a halophilic γ - Proteobacterium from the Lō‘ihi submarine volcano. Hawai‘i. Int J Syst Evol Microbiol 53:1873–1879 [CrossRef]
    [Google Scholar]
  4. Finkmann W., Altendorf K., Stackebrandt E., Lipski A. 2000; Characterization of N2O-producing Xanthomonas -like isolates from biofilters as Stenotrophomonas nitritireducens sp.nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50:273–282 [CrossRef]
    [Google Scholar]
  5. Ivanova E. P., Mikhailov V. V. 2001; A new family, Alteromonadaceae fam. nov., including the marine proteobacteria of the generaAlteromonas , Pseudoalteromonas , Idiomarina and Colwellia . Mikrobiologia 70:15–23 (in Russian
    [Google Scholar]
  6. Ivanova E. P., Romanenko L. A., Chun J. 7 other authors 2000; Idiomarina gen. nov., comprising novel indigenous deep-sea bacteria from the Pacific Ocean, including descriptions of two species, Idiomarina abyssalis sp.nov. and Idiomarina zobellii sp. nov. Int J Syst Evol Microbiol 50:901–907 [CrossRef]
    [Google Scholar]
  7. Macián M. C., Ludwig W., Scheifer K. H., Garay E., Pujalte M. J. 2001; Thalassomonas viridans gen. nov., sp. nov., a novel marine γ- Proteobacterium . Int J Syst Evol Microbiol 51:1283–1289
    [Google Scholar]
  8. Martínez-Cánovas M. J., Quesada E., Martínez-Checa F., Béjar V. 2004; A taxonomic study to establish the relationship between exopolysaccharide-producing bacterial strains living in diverse hypersaline habitats. Curr Microbiol 48:348–353 [CrossRef]
    [Google Scholar]
  9. Mata J. A., Martínez-Cánovas M. J., Quesada E., Béjar V. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [CrossRef]
    [Google Scholar]
  10. Moraine R. A., Rogovin P. 1966; Kinetics of polysaccharide B-1459 fermentation. Biotechnol Bioeng 8:511–524 [CrossRef]
    [Google Scholar]
  11. Quesada E., Ventosa A., Rodríguez-Valera F., Megías L., Ramos-Cormenzana A. 1983; Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. J Gen Microbiol 129:2649–2657
    [Google Scholar]
  12. Rodríguez-Valera F., Ruíz-Berraquero F., Ramos-Cormenzana A. 1981; Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7:235–243 [CrossRef]
    [Google Scholar]
  13. Stackebrandt E., Pukall R. 1999; Response to Althoff et al . ( Mar Biol 130: 529–536). Deriving taxonomic decisions from 16S rDNA: a case study. Mar Biol 133:159–161 [CrossRef]
    [Google Scholar]
  14. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63172-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63172-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error