1887

Abstract

A new anaerobic, thermophilic, facultatively carboxydotrophic bacterium, strain Nor1, was isolated from a hot spring at Norris Basin, Yellowstone National Park. Cells of strain Nor1 were curved motile rods with a length of 2·6–3 μm, a width of about 0·5 μm and lateral flagellation. The cell wall structure was of the Gram-negative type. Strain Nor1 was thermophilic (temperature range for growth was 40–68 °C, with an optimum at 60 °C) and neutrophilic (pH range for growth was 6·5–7·6, with an optimum at 6·8–7·0). It grew chemolithotrophically on CO (generation time, 1·15 h), producing equimolar quantities of H and CO according to the equation CO+HO→CO+H. During growth on CO in the presence of ferric citrate or amorphous ferric iron oxide, strain Nor1 reduced ferric iron but produced H and CO at a ratio close to 1 : 1, and growth stimulation was slight. Growth on CO in the presence of sodium selenite was accompanied by precipitation of elemental selenium. Elemental sulfur, thiosulfate, sulfate and nitrate did not stimulate growth of strain Nor1 on CO and none of these chemicals was reduced. Strain Nor1 was able to grow on glucose, sucrose, lactose, arabinose, maltose, fructose, xylose and pyruvate, but not on cellobiose, galactose, peptone, yeast extract, lactate, acetate, formate, ethanol, methanol or sodium citrate. During glucose fermentation, acetate, H and CO were produced. Thiosulfate was found to enhance the growth rate and cell yield of strain Nor1 when it was grown on glucose, sucrose or lactose; in this case, acetate, HS and CO were produced. In the presence of thiosulfate or ferric iron, strain Nor1 was also able to grow on yeast extract. Lactate, acetate, formate and H were not utilized either in the absence or in the presence of ferric iron, thiosulfate, sulfate, sulfite, elemental sulfur or nitrate. Growth was completely inhibited by penicillin, ampicillin, streptomycin, kanamycin and neomycin. The DNA G+C content of the strain was 51·7±1 mol%. Analysis of the 16S rRNA gene sequence revealed that strain Nor1 belongs to the phylum of the Gram-positive bacteria. On the basis of the studied phenotypic and phylogenetic features, we propose that strain Nor1 be assigned to a new genus, gen. nov. The type species is sp. nov. (type strain, Nor1=DSM 14886=VKM B-2281).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63186-0
2004-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542353.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63186-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Baena S., Fardeau M.-L., Woo T. H. S., Ollivier B., Labat M., Patel B. K. C. 1999; Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans , ‘ Selenomonas acidaminophila ’ and Eubacterium acidaminophilum , as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov. and Anaeromusa acidaminophila gen. nov., comb. nov.. Int J Syst Bacteriol 49:969–974 [CrossRef]
    [Google Scholar]
  3. Balashova V. V., Zavarzin G. A. 1980; Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology (English translation of Mikrobiologiya) 48635–639
    [Google Scholar]
  4. Bonam D., Lehman L., Roberts G. P., Ludden P. W. 1989; Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum : effects of CO and oxygen on synthesis and activity. J Bacteriol 171:3102–3107
    [Google Scholar]
  5. Bryant M. P. 1956; The characteristics of Selenomonas isolated from bovine rumen contents. J Bacteriol 72:162–167
    [Google Scholar]
  6. Dobbek H., Svetlitchnyi V., Gremer L., Huber R., Meyer O. 2001; Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni–4Fe–5S] cluster. Science 293:1281–1285 [CrossRef]
    [Google Scholar]
  7. Fardeau M.-L., Bonilla Salinas M., L'Haridon S., Jeanthon C., Verhé F., Cayol J.-L., Patel B. K. C., Garcia J.-L., Ollivier B. 2004; Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus : reassignment of T. subterraneus , Thermoanaerobacter yonseiensis , Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. Int J Syst Evol Microbiol 54:467–474 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  9. Kevbrin V. V., Zavarzin G. A. 1992; The influence of sulfur compounds on the growth of halophilic homoacetic bacterium Acetohalobium arabaticum . Microbiology (English translation of Mikrobiologiya) 61812–817
    [Google Scholar]
  10. Lee S. Y., Mabee M. S., Jangaard N. O. 1978; Pectinatus , a new genus of the family Bacteroidaceae . Int J Syst Bacteriol 28:582–594 [CrossRef]
    [Google Scholar]
  11. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  12. Marmur J. 1961; A procedure for the isolation of desoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  13. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  14. Pusheva M. A., Sokolova T. G. 1995; Distribution of CO-dehydrogenase activity in anaerobic thermophilic carboxydotrophic bacterium Carboxydothermus hydrogenoformans grown at the expense of CO or pyruvate. Microbiology (English translation of Mikrobiologiya) 64491–495
    [Google Scholar]
  15. Sokolova T. G., Gonzalez J. M., Kostrikina N. A., Chernyh N. A., Tourova T. P., Kato C., Bonch-Osmolovskaya E. A., Robb F. T. 2001; Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Microbiol 51:141–149
    [Google Scholar]
  16. Sokolova T. G., Kostrikina N. A., Chernyh N. A., Tourova T. P., Kolganova T. V., Bonch-Osmolovskaya E. A. 2002; Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from Kamchatkan hot spring. Int J Syst Evol Microbiol 52:1961–1967 [CrossRef]
    [Google Scholar]
  17. Sokolova T. G., Jeanthon C., Kostrikina N. A., Chernyh N. A., Lebedinsky A. V., Stackebrandt E., Bonch-Osmolovskaya E. A. 2004; The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8:317–323
    [Google Scholar]
  18. Stankewich J. P., Cosenza B. J., Shigo A. L. 1971; Clostridium quercicolum sp. n., isolated from discolored tissues in living oak trees. Antonie van Leeuwenhoek 37:299–302 [CrossRef]
    [Google Scholar]
  19. Strimmer K., von Haeseler A. 1996; Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969 [CrossRef]
    [Google Scholar]
  20. Strömpl C., Tindall B. J., Lunsdorf H., Wong T. Y., Moore E. R., Hippe H. 2000; Reclassification of Clostridium quercicolum as Dendrosporobacter quercicolus gen. nov., comb. nov.. Int J Syst Evol Microbiol 50:101–106 [CrossRef]
    [Google Scholar]
  21. Svetlichny V. A., Sokolova T. G., Gerhardt M., Ringpfeil M., Kostrikina N. A., Zavarzin G. A. 1991; Carboxydothermus hydrogenoformans gen.nov., sp.nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island. Syst Appl Microbiol 14:254–260 [CrossRef]
    [Google Scholar]
  22. Svetlichny V. A., Sokolova T. G., Kostrikina N. A., Lysenko A. M. 1994; A new thermophilic anaerobic carboxydotrophic bacterium Carboxydothermus restrictus sp. nov. Microbiology (English translation of Mikrobiologiya 3:294–297
    [Google Scholar]
  23. Svetlitchny V., Peschel C., Acker G., Meyer O. 2001; Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans . J Bacteriol 183:5134–5144 [CrossRef]
    [Google Scholar]
  24. Trüper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae . Quantitative measurements on growing cells of Chromatium okenii . Antonie van Leeuwenhoek 30:225–238 [CrossRef]
    [Google Scholar]
  25. Uffen R. L. 1976; Anaerobic growth of Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Natl Acad Sci U S A 73:3298–3302 [CrossRef]
    [Google Scholar]
  26. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886
    [Google Scholar]
  27. Zavarzina D. G., Zhilina T. N., Tourova T. P., Kuznetsov B. B., Kostrikina N. A., Bonch-Osmolovskaya E. A. 2000; Thermanaerovibrio velox sp. nov., a new anaerobic, thermophilic, organotrophic bacterium that reduces elemental sulfur, and emended description of the genus Thermanaerovibrio . Int J Syst Evol Microbiol 50:1287–1295 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63186-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63186-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error