1887

Abstract

A moderately halophilic bacterium, strain SS20, capable of growing at salinities of 1–20 % (w/v) NaCl was isolated from a solar saltern of the Dangjin area in Korea and was characterized taxonomically. Strain SS20 was a Gram-negative bacterium comprising motile, short rods. Its major cellular fatty acids were C 7, C 8 cyclo and C. The DNA G+C content was 70 mol% and the predominant ubiquinone was Q-9. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SS20 belonged to the genus . The levels of 16S rRNA gene sequence similarity to the type strains of species were in the range 93·0–97·5 %. The levels of DNA–DNA relatedness between strain SS20 and the type strains of phylogenetically closely related species were in the range 5·3–12·3 %. On the basis of physiological and molecular properties, strain SS20 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SS20 (=KCTC 12127=JCM 12237).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63194-0
2004-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542037.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63194-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., García M. T., Vargas C., Cánovas D., Nieto J. J., Ventosa A. 2001; Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst Evol Microbiol 51:1457–1462
    [Google Scholar]
  2. Arahal D. R., Castillo A. M., Ludwig W., Schleifer K. H., Ventosa A. 2002a; Proposal of Cobetia marina gen. nov., comb. nov. within the family Halomonadaceae , to include the species Halomonas marina . Syst Appl Microbiol 25:207–211 [CrossRef]
    [Google Scholar]
  3. Arahal D. R., Ludwig W., Schleifer K. H., Ventosa A. 2002b; Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52:241–249
    [Google Scholar]
  4. Baumann L., Bowditch R. D., Baumann P. 1983; Description of Deleya gen. nov. created to accommodate the marine species Alcaligenes aestus , A. pacificus , A. cupidus , A. venustus , and Pseudomonas marina . Int J Syst Bacteriol 33:793–802 [CrossRef]
    [Google Scholar]
  5. Bouchotroch S., Quesada E., Moral A. D., Llamas I., Béjar V. 2001; Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632 [CrossRef]
    [Google Scholar]
  6. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  7. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  8. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Baumann et al . 1983), Halomonas (Vreeland et al . 1980),and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas , and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 46:550–558 [CrossRef]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Bacteriol 39:224–229
    [Google Scholar]
  11. Felsenstein J. 2002 phylip (phylogeny inference package), version 3.6a. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  12. Franzmann P. D., Tindall B. J. 1990; A chemotaxonomic study of members of the family Halomonadaceae . Syst Appl Microbiol 13:142–147 [CrossRef]
    [Google Scholar]
  13. García M. T., Mellado E., Ostos J. C., Ventosa A. 2004; Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54:1723–1728 [CrossRef]
    [Google Scholar]
  14. Kaye J. Z., Márquez M. C., Ventosa A., Baross J. A. 2004; Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54:499–511 [CrossRef]
    [Google Scholar]
  15. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  16. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–208
    [Google Scholar]
  17. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  18. Margesin R., Schinner F. 2001; Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83 [CrossRef]
    [Google Scholar]
  19. Mata J. A., Martínez-Cánovas M. J., Quesada E., Béjar V. 2002; A detailed phenotypic characterization of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [CrossRef]
    [Google Scholar]
  20. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A. 1995; Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui , Volcaniella eurihalina , and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int J Syst Bacteriol 45:712–716 [CrossRef]
    [Google Scholar]
  21. Okamoto T., Taguchi H., Nakamura K., Ikenaga H., Kuraishi H., Yamasato K. 1993; Zymobacter palmae gen. nov., sp. nov. a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160:333–337
    [Google Scholar]
  22. Quesada E., Valderrama M. J., Bejar V., Ventosa A., Gutiérrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A. 1990; Volcaniella eurihalina gen. nov., sp. nov. a moderately halophilic nonmotile gram-negative rod. Int J Syst Bacteriol 40:261–267 [CrossRef]
    [Google Scholar]
  23. Reddy G. S. N., Raghavan P. U. M., Sarita N. B., Prakash J. S. S., Nagesh N., Delille D., Shivaji S. 2003; Halomonas glaciei sp. nov. isolated from fast ice of Adelie Land, Antarctica. Extremophiles 7:55–61
    [Google Scholar]
  24. Romanenko L. A., Schumann P., Roche M., Mikhailov V. V., Stackebrandt E. 2002; Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium . Int J Syst Evol Microbiol 52:1767–1772 [CrossRef]
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  27. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  28. Valderrama M. J., Quesada E., Bejar V., Ventosa A., Gutierrez M. C., Berraquero F. R., Cormenzana A. R. 1991; Deleya salina sp. nov., a moderately halophilic Gram-negative bacterium. Int J Syst Bacteriol 41:377–384 [CrossRef]
    [Google Scholar]
  29. Valderrama M. J., Monteoliva-Sanchez M., Quesada E., Ramos-Cormenzana A. 1998; Influence of salt concentration on the cellular fatty acid composition of the moderately halophilic bacterium Halomonas salina . Res Microbiol 149:675–679 [CrossRef]
    [Google Scholar]
  30. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  31. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata , a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495 [CrossRef]
    [Google Scholar]
  32. Wayne L. G. 1994; Actions of the Judicial Commission of the International Committee on Systematic Bacteriology on requests for opinions published between, January 1985 and July 1993. Int J Syst Bacteriol 44:177–178 [CrossRef]
    [Google Scholar]
  33. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R., Abraham W. R., Lunsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen. nov., sp. nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348 [CrossRef]
    [Google Scholar]
  34. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. 1996; Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46:502–505 [CrossRef]
    [Google Scholar]
  35. Yoon J.-H., Choi S. H., Lee K.-C., Kho Y. H., Kang K. H., Park Y.-H. 2001; Halomonas marisflavae sp. nov., a halophilic bacterium isolated from the Yellow Sea in Korea. Int J Syst Evol Microbiol 51:1171–1177 [CrossRef]
    [Google Scholar]
  36. Yoon J.-H., Lee K.-C., Kho Y.-H., Kang K.-H., Kim C.-J., Park Y.-H. 2002; Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 52:123–130
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63194-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63194-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error