1887

Abstract

A novel genus and species are proposed for two strains of methanotrophic bacteria isolated from hypersaline lakes in the Crimean Peninsula of Ukraine. Strains 10Ki and 4Kr are moderate halophiles that grow optimally at 1–1·5 M (5·8–8·7 %, w/v) NaCl and tolerate NaCl concentrations from 0·2 M up to 2·5 M (1·2–15 %). This optimum and upper limit are the highest for any methanotrophic bacterium known to date. The strains are Gram-negative, aerobic, non-pigmented, motile, coccoid to spindle-shaped bacteria that grow on methane or methanol only and utilize the ribulose monophosphate pathway for carbon assimilation. They are neutrophilic (growth occurs only in the range pH 6·5–7·5) and mesophilic (optimum growth occurs at 30 °C). On the basis of 16S rRNA gene sequence phylogeny, strains 10Ki and 4Kr represent a type I methanotroph within the ‘’. However, the 16S rRNA gene sequence displays <91·5 % identity to any public-domain sequence. The most closely related methanotrophic bacterium is the thermophilic strain HB. The DNA G+C content is 58·7 mol%. The major phospholipid fatty acids are 18 : 17 (52–61 %), 16 : 0 (22–23 %) and 16 : 17 (14–20 %). The dominance of 18 : 1 over 16 : 0 and 16 : 1 fatty acids is unique among known type I methanotrophs. The data suggest that strains 10Ki and 4Kr should be considered as belonging to a novel genus and species of type I methanotrophic bacteria, for which the name gen. nov., sp. nov. is proposed. Strain 10Ki (=DSM 16011=ATCC BAA-967) is the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63213-0
2005-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs551817.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63213-0&mimeType=html&fmt=ahah

References

  1. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E. 2000; Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266 [CrossRef]
    [Google Scholar]
  2. Auman A. J., Speake C. C., Lidstrom M. E. 2001; nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67:4009–4016 [CrossRef]
    [Google Scholar]
  3. Bodrossy L., Kovács K. L., McDonald I. R., Murrell J. C. 1999; A novel thermophilic methane-oxidising γ -Proteobacterium. FEMS Microbiol Lett 170:335–341
    [Google Scholar]
  4. Bowman J. 2000; The methanotrophs – the families Methylococcaceae and Methylocystaceae. In The Prokaryotes , 3rd edn. Edited by Dworkin M. http://link.springer-ny.com/link/service/books/10125/
    [Google Scholar]
  5. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. 1993; Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus , validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753 [CrossRef]
    [Google Scholar]
  6. Bowman J. P., McCammon S. A., Skerratt J. H. 1997; Methylosphaera hansonii gen. nov., sp. nov. a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143:1451–1459 [CrossRef]
    [Google Scholar]
  7. Conrad R., Frenzel P., Cohen Y. 1995; Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity. FEMS Microbiol Ecol 16:297–306 [CrossRef]
    [Google Scholar]
  8. Dahl J. S., Mehta R. J., Hoare D. S. 1972; New obligate methylotroph. J Bacteriol 109:916–921
    [Google Scholar]
  9. Dedysh S. N., Berestovskaya Y. Y., Vasylieva L. V., Belova S. E., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Liesack W., Zavarzin G. A. 2004; Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156 [CrossRef]
    [Google Scholar]
  10. Giani D., Giani L., Cohen Y., Krumbein W. E. 1984; Methanogenesis in the hypersaline Solar Lake (Sinai). FEMS Microbiol Lett 25:219–224 [CrossRef]
    [Google Scholar]
  11. Graham D. W., Korich D. G., LeBlanc R. P., Sinclair N. A., Arnold R. G. 1992; Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol 58:2231–2236
    [Google Scholar]
  12. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  13. Hanson R. S., Hanson T. E. 1996; Methanotrophic bacteria. Microbiol Rev 60:439–471
    [Google Scholar]
  14. Henckel T., Jäckel U., Schnell S., Conrad R. 2000; Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl Environ Microbiol 66:1801–1808 [CrossRef]
    [Google Scholar]
  15. Heyer J., Suckow R. 1985; Ökologische Untersuchungen der Methanoxydation in einem sauren Moorsee. Limnologica 16:247–266 (in German
    [Google Scholar]
  16. Heyer J., Galchenko V. F., Dunfield P. F. 2002; Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. Microbiology 148:2831–2846
    [Google Scholar]
  17. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. 1995; Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208 [CrossRef]
    [Google Scholar]
  18. Horz H. P., Raghubanshi A. S., Heyer J., Kammann C., Conrad R., Dunfield P. F. 2002; Activity and community structure of methane oxidising bacteria in a wet meadow soil. FEMS Microbiol Ecol 41:247–257 [CrossRef]
    [Google Scholar]
  19. Iversen N., Oremland R. S., Klug M. J. 1987; Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation. Limnol Oceanogr 32:804–814 [CrossRef]
    [Google Scholar]
  20. Joye S. B., Connell T. L., Miller L. G., Oremland R. S., Jellison R. S. 1999; Oxidation of ammonia and methane in an alkaline, saline lake. Limnol Oceanogr 44:178–188 [CrossRef]
    [Google Scholar]
  21. Kalyuzhnaya M. G., Khmelenina V. N., Starostina N. G., Baranova S. V., Suzina N. E., Trotsenko Y. A. 1998; A new moderately halophilic methanotroph of the genus Methylobacter . Microbiology (English translation of Mikrobiologiia ) 67438–444
    [Google Scholar]
  22. Kalyuzhnaya M. G., Khmelenina V. N., Suzina N. E., Lysenko A. M., Trotsenko Y. A. 1999; New methanotrophic isolates of the southern Transbaikal region. Microbiology (English translation of Mikrobiologiia ) 68592–600
    [Google Scholar]
  23. Kalyuzhnaya M. G., Khmelenina V. N., Eshinimaev B. 7 other authors 2001; Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the southeastern Transbaikal region and description of Methylomicrobium buryatense sp. nov. Syst Appl Microbiol 24:166–176 [CrossRef]
    [Google Scholar]
  24. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  25. Khmelenina V. N., Starostina N. G., Tsvetkova M. G., Sokolov A. P., Suzina N. E., Trotsenko Y. A. 1996; Methanotrophic bacteria in saline reservoirs of Ukraine and Tuva. Microbiology (English translation of Mikrobiologiia ) 65609–615
    [Google Scholar]
  26. Khmelenina V. N., Kalyuzhnaya M. G., Starostina N. G., Suzina N. E., Trotsenko Y. A. 1997; Isolation and characterization of halotolerant alkalophilic methanotrophic bacteria from Tuva soda lakes. Curr Microbiol 35:257–261 [CrossRef]
    [Google Scholar]
  27. Kushner D. J. 1978; Life in high salt and solute concentrations: halophilic bacteria. In Microbial Life in Extreme Environments pp  317–368 Edited by Kushner D. J. London: Academic Press;
    [Google Scholar]
  28. Large P. J., Quayle J. R. 1963; Microbial growth on C1 compounds. V. Enzyme activities in extracts of Pseudomonas AM1. Biochem J 87:386–395
    [Google Scholar]
  29. Lees V., Owens N. J. P., Murrell J. C. 1991; Nitrogen metabolism in marine methanotrophs. Arch Microbiol 157:60–65
    [Google Scholar]
  30. Ollivier B., Caumette P., Garcia J. L., Mah R. A. 1994; Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38
    [Google Scholar]
  31. Oren A. 1999; Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348
    [Google Scholar]
  32. Schmidt H. A., Strimmer K., Vingron M., von Haeseler A. 2002; tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504 [CrossRef]
    [Google Scholar]
  33. Sieburth J. M., Johnson P. W., Eberhardt M. A., Sieracki M. E., Lidstrom M., Laux D. 1987; The first methane-oxidizing bacterium from the upper mixing layer of the deep ocean: Methylomonas pelagica sp. nov. Curr Microbiol 14:285–293 [CrossRef]
    [Google Scholar]
  34. Slobodkin A. I., Zavarzin G. A. 1992; Methane production in halophilic cyanobacterial mats in lagoons of lake Sivash. Microbiology (English translation of Mikrobiologiia ) 61198–201
    [Google Scholar]
  35. Sokolov A. P., Trotsenko Y. A. 1995; Methane consumption in (hyper)saline habitats of Crimea (Ukraine). FEMS Microbiol Ecol 18:299–304 [CrossRef]
    [Google Scholar]
  36. Sorokin D. Y., Jones B. E., Kuenen J. G. 2000; An obligate methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment. Extremophiles 4:145–155 [CrossRef]
    [Google Scholar]
  37. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  38. Strunk O., Ludwig W. 1996 arb: a software environment for sequence data Munich: Technische Universität München; http://www.arb-home.de
    [Google Scholar]
  39. Vela G. R., Wyss O. 1964; Improved stain for visualization of Azotobacter encystment. J Bacteriol 87:476–477
    [Google Scholar]
  40. Wise M. G., McArthur J. V., Shimkets L. J. 2001; Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp. nov., novel type I methanotrophs. Int J Syst Evol Microbiol 51:611–621
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63213-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63213-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error