1887

Abstract

This study presents the first 18S rRNA multi-library environmental PCR survey of a single protozoan phylum, Cercozoa Cavalier-Smith 1998, from a range of different habitats. Phylogenetic analysis reveals at least nine novel clades within the phylum, several possibly at the level of order or above. Further experiments are described to ascertain the true ecological and geographical distributions of some clades that might be inferred from the tree to be restricted in either or both ways. These results suggest that the diversity of cercozoan taxa may run into thousands of lineages, making it comparable in diversity to the largest better-characterized protozoan phyla, e.g. Ciliophora (ciliates and suctorians) and Foraminifera. New sequences of cultured , and are also presented. In the light of these additions, and the increased taxon sampling from the environmental libraries, some revisions of cercozoan classification are made: the transfer of Spongomonadea from Reticulofilosa to Monadofilosa; the removal of Metopiida from Sarcomonadea; and the creation of the new order Metromonadida, currently containing the single genus . Although groups with weak to moderate support with Chlorarachnea, it is here placed in superclass Monadofilosa, to which it is morphologically more similar.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63229-0
2004-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542393.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63229-0&mimeType=html&fmt=ahah

References

  1. Amaral Zettler L. A., Gomez F., Zettler E., Keenan B. G., Amils R., Sogin M. L. 2002; Microbiology: eukaryotic diversity in Spain's River of Fire. Nature 417:137 [CrossRef]
    [Google Scholar]
  2. Archibald J. M., Longet D., Pawlowski J., Keeling P. J. 2003; A novel polyubiquitin structure in Cercozoa and Foraminifera: evidence for a new eukaryotic supergroup. Mol Biol Evol 20:62–66 [CrossRef]
    [Google Scholar]
  3. Atkins M. S., Teske A. P., Anderson O. R. 2000; A survey of flagellate diversity at four deep-sea hydrothermal vents in the Eastern Pacific Ocean using structural and molecular approaches. J Eukaryot Microbiol 47:400–411 [CrossRef]
    [Google Scholar]
  4. Bojanic N. 2001; Seasonal distribution of the ciliated protozoa in Kastela Bay. J Mar Biol Assoc UK 81:383–390 [CrossRef]
    [Google Scholar]
  5. Burki F., Berney C., Pawlowski J. 2002; Phylogenetic position of Gromia oviformis Dujardin inferred from nuclear-encoded small subunit ribosomal DNA. Protist 153:251–260 [CrossRef]
    [Google Scholar]
  6. Cavalier Smith T. 1996/7; Amoeboflagellates and mitochondrial cristae in eukaryotic evolution: megasystematics of the new protozoan subkingdoms Eozoa and Neozoa. Arch Protistenk 147:237–258
    [Google Scholar]
  7. Cavalier-Smith T. 1998a; Neomonada and the origin of animals and fungi. In Evolutionary Relationships among Protozoa pp  375–407 Edited by Coombs G. H., Vickerman K., Sleigh M. A., Warren A. London: Chapman & Hall;
    [Google Scholar]
  8. Cavalier-Smith T. 1998b; A revised six-kingdom system of life. Biol Rev 73:203–266 [CrossRef]
    [Google Scholar]
  9. Cavalier-Smith T. 2000; Flagellate megaevolution: the basis for eukaryote diversification. In The Flagellates pp  361–390 Edited by Green J. R., Leadbeater B. S. C. London: Taylor & Francis;
    [Google Scholar]
  10. Cavalier-Smith T. 2004; Only six kingdoms of life. Proc R Soc Lond B Biol Sci 271:1251–1262 [CrossRef]
    [Google Scholar]
  11. Cavalier-Smith T., Chao E. E-Y. 2003; Phylogeny and classification of phylum Cercozoa (Protozoa). Protist 154:341–358 [CrossRef]
    [Google Scholar]
  12. Cavalier-Smith T., Chao E. E-Y., Oates B. 2004; Molecular phylogeny of Amoebozoa and the evolutionary significance of the unikont Phalansterium . Eur J Protistol 40:21–48 [CrossRef]
    [Google Scholar]
  13. Chen C., Ji R., Schwab D. J. 11 other authors 2002; A model study of the coupled biological and physical dynamics in Lake Michigan. Ecol Model 152:145–268 [CrossRef]
    [Google Scholar]
  14. Corliss J. O. 1999; Biodiversity and numbers of species of protists. In Nature and Human Society: the Quest for a Sustainable World . pp  130–155 Edited by Raven P., Williams T. Washington, DC: National Academy Press;
  15. Cronn R., Cedroni M., Haselkorn T., Grover C., Wendel J. F. 2002; PCR-mediated recombination in amplification products derived from polyploid cotton. Theor Appl Genet 104:482–489 [CrossRef]
    [Google Scholar]
  16. Dawson S. C., Pace N. R. 2002; Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci U S A 99:8324–8329 [CrossRef]
    [Google Scholar]
  17. Díez B., Pedrós-Alió C., Massana R. 2001; Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941 [CrossRef]
    [Google Scholar]
  18. Edgcomb V. P., Kysela D. T., Teske A., de Vera Gomez A., Sogin M. L. 2002; Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci U S A 99:7658–7662 [CrossRef]
    [Google Scholar]
  19. Embley T. M., Hirt R. P. 1998; Early branching eukaryotes?. Curr Opin Genet Dev 8:624–629 [CrossRef]
    [Google Scholar]
  20. Esteban G. F., Finlay B. J. 2003; Cryptic freshwater ciliates in a hypersaline lagoon. Protist 154:411–418 [CrossRef]
    [Google Scholar]
  21. Finlay B. J. 2002; Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063 [CrossRef]
    [Google Scholar]
  22. Finlay B. J., Corliss J. O., Esteban G., Fenchel T. 1996; Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. Q Rev Biol 71:221–237 [CrossRef]
    [Google Scholar]
  23. Holzmann M., Habura A., Giles H., Bowser S. S., Pawlowski J. 2003; Freshwater foraminiferans revealed by analysis of environmental DNA samples. J Eukaryot Microbiol 50:135–139 [CrossRef]
    [Google Scholar]
  24. Horner D. S., Embley T. M. 2001; Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. Mol Biol Evol 18:1970–1975 [CrossRef]
    [Google Scholar]
  25. Judo M. S. B., Wedel A. B., Wilson C. 1998; Stimulation and suppression of PCR-mediated recombination. Nucleic Acids Res 26:1819–1825 [CrossRef]
    [Google Scholar]
  26. Keeling P. J. 2001; Foraminifera and Cercozoa are related in actin phylogeny: two orphans find a home?. Mol Biol Evol 181551–1557 [CrossRef]
    [Google Scholar]
  27. Kühn S., Lange M., Medlin L. K. 2000; Phylogenetic position of Cryothecomonas inferred from nuclear-encoded small subunit ribosomal RNA. Protist 151:337–345 [CrossRef]
    [Google Scholar]
  28. Kühn S., Medlin L., Eller G. 2004; Phylogenetic position of the parasitoid nanoflagellate Pirsonia inferred from nuclear-encoded small subunit ribosomal DNA and a description of Pseudopirsonia n. gen. and Pseudopirsonia mucosa (Drebes) comb. nov.. Protist 155143–156 [CrossRef]
    [Google Scholar]
  29. Larsen J., Patterson D. J. 1990; Some flagellates (Protista) from tropical marine sediments. J Nat Hist 24:801–937 [CrossRef]
    [Google Scholar]
  30. Longet D., Archibald J. M., Keeling P. J., Pawlowski J. 2003; Foraminifera and Cercozoa share a common origin according to RNA polymerase II phylogenies. Int J Syst Evol Microbiol 53:1735–1739 [CrossRef]
    [Google Scholar]
  31. López-García P., Rodríguez-Valera F., Pedrós-Alió C., Moreira D. 2001; Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607 [CrossRef]
    [Google Scholar]
  32. López-García P., Philippe H., Gail F., Moreira D. 2003; Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci U S A 100:697–702 [CrossRef]
    [Google Scholar]
  33. Martin D., Rybicki E. 2000; RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563 [CrossRef]
    [Google Scholar]
  34. Medlin L. K., Fryxell G. A., Cox E. R. 1985; Successional sequences of microbial colonization on three species of rhodophycean macroalgae. Ann Bot Lond 56:399–414
    [Google Scholar]
  35. Moon-van der Staay S. Y., De Wachter R., Vaulot D. 2001; Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610 [CrossRef]
    [Google Scholar]
  36. Moreira D., López-García P. 2002; The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10:31–38 [CrossRef]
    [Google Scholar]
  37. Nanney D. L. 1999; When is a rose? The kinds of tetrahymenas. In Species: New Interdisciplinary Essays Edited by Wilson R. W. Cambridge, MA: MIT Press;
    [Google Scholar]
  38. Nikolaev S. I., Berney C., Fahrni J., Mylnikov A. P., Aleshin V. V., Petrov N. B., Pawlowski J. 2003; Gymnophrys cometa and Lecythium sp. are core Cercozoa: evolutionary implications. Acta Protozool 42:183–190
    [Google Scholar]
  39. Odelberg S. J., Weiss R. B., Hata A., White R. 1995; Template-switching during DNA synthesis by Thermus aquaticus DNA polymerase I. Nucleic Acids Res 23:2049–2057 [CrossRef]
    [Google Scholar]
  40. Pawlowski J., Fahrni J. F., Brykczynska U., Habura A., Bowser S. S. 2001; Molecular data reveal high taxonomic diversity of allogromiid Foraminifera in Explorers Cove (McMurdo Sound, Antarctica). Polar Biol 25:96–105
    [Google Scholar]
  41. Persson A. 2002; Proliferation of cryptic protists and germination of resting stages from untreated sediment samples with emphasis on dinoflagellates. Ophelia 55:151–166
    [Google Scholar]
  42. Philippe H., Germot A. 2000; Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. Mol Biol Evol 17:830–834 [CrossRef]
    [Google Scholar]
  43. Polet S., Berney C., Fahrni J., Pawlowski J. 2004; Small-subunit ribosomal RNA gene sequences of Phaeodarea challenge the monophyly of Haeckel's Radiolaria. Protist 155:53–63 [CrossRef]
    [Google Scholar]
  44. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  45. Richards T., Hirt R. P., Williams A. P., Embley T. M. 2003; Horizontal gene transfer and the evolution of parasitic protozoa. Protist 154:17–32 [CrossRef]
    [Google Scholar]
  46. Smirnov A., Thar R. 2003; Spatial distribution of Gymnamoebae (Rhizopoda, Lobosea) in brackish-water sediments at the scale of centimeters and millimeters. Protist 154:359–369 [CrossRef]
    [Google Scholar]
  47. Stiller J. W., Hall B. D. 1999; Long-branch attraction and the rDNA model of early eukaryotic evolution. Mol Biol Evol 16:1270–1279 [CrossRef]
    [Google Scholar]
  48. Stoeck T., Epstein S. 2003; Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. Appl Environ Microbiol 69:2657–2663 [CrossRef]
    [Google Scholar]
  49. Swofford D. W. 1999 paup* 4.0b10 Sunderland, MA: Sinauer;
    [Google Scholar]
  50. Vickerman K., Le Ray D., Hoef-Emden K., De Jonckheere J. 2002; The soil flagellate Proleptomonas faecicola : cell organisation and phylogeny suggest that the only described free-living trypanosomatid is not a kinetoplastid but has cercomonad affinities. Protist 153:9–24 [CrossRef]
    [Google Scholar]
  51. Wylezich C., Meisterfeld R., Meisterfeld S., Schlegel M. 2002; Phylogenetic analyses of small subunit ribosomal RNA coding regions reveal a monophyletic lineage of euglyphid testate amoebae (Order Euglyphida). J Eukaryot Microbiol 49:108–118 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63229-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63229-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error