1887

Abstract

A novel thermotolerant bacterium, designated strain I78, was isolated from a self-temperature-recording colonization system deployed in a hydrothermal diffusing flow (maximal temperature 78 °C) at the TOTO caldera in the Mariana Arc, Western Pacific. Cells were highly motile curved rods with a single polar flagellum. Growth was observed at 15–55 °C (optimum 35–40 °C; 60 min doubling time) and pH 5·0–8·0 (optimum pH 6·0). The isolate was a microaerobic chemolithomixotroph capable of using thiosulfate, elemental sulfur or sulfide as the sole energy source, and molecular oxygen as the sole electron acceptor. The isolate was able to grow chemolithoautotrophically with carbon dioxide. Various organic substrates such as complex proteinaceous compounds, carbohydrates, organic acids, amino acids and sugars could also support growth as the carbon source instead of carbon dioxide with sulfur oxidation. The G+C content of the genomic DNA was 43·8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belonged to the genus and was most closely related to strain TH-55 and sp. strain L-12, while DNA–DNA hybridization demonstrated that the novel isolate could be genetically differentiated from previously described strains of . On the basis of its physiological and molecular properties the isolate is representative of a novel species, for which the name sp. nov. is proposed (type strain, I78=JCM 12397=DSM 16397).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63284-0
2004-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542325.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63284-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  3. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F. F. 1998; Genbank. Nucleic Acids Res 26:1–7 [CrossRef]
    [Google Scholar]
  4. Brinkhoff T., Muyzer G. 1997; Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. Appl Environ Microbiol 63:3789–3796
    [Google Scholar]
  5. Brinkhoff T., Muyzer G., Wirsen C. O., Kuever J. 1999a; Thiomicrospira kuenenii sp. nov. and Thiomicrospira frisia sp. nov., two mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacteria isolated from an intertidal mud flat. Int J Syst Bacteriol 49:385–392 [CrossRef]
    [Google Scholar]
  6. Brinkhoff T., Muyzer G., Wirsen C. O., Kuever J. 1999b; Thiomicrospira chilensis sp. nov., a mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacteria isolated from a Thioploca mat. Int J Syst Bacteriol 49:875–879 [CrossRef]
    [Google Scholar]
  7. Brinkhoff T., Sievert S. M., Kuever J., Muyzer G. 1999c; Distribution and diversity of sulfur-oxidizing Thiomicrospira spp. at a shallow-water hydrothermal vent in the Aegean Sea (Milos, Greece). Appl Environ Microbiol 65:3843–3849
    [Google Scholar]
  8. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  9. Eberhard C., Wirsen C. O., Jannasch H. W. 1995; Oxidation of polymetal sulfides by chemolithoautorophic bacteria from deep-sea hydrothermal vents. Geomicrobiol J 13:145–164 [CrossRef]
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  11. Gamo T., Okamura K., Charlou J. L., Urabe T., Auzende J. M., Ishibashi J., Shitashima K., Kodama Y. Shipboard Scientific Party of the ManusFlux Cruise 1997; Acidic and sulfate-rich hydrothermal fluid from the Manus basin, Papua New Guinea. Geology 25:139–142 [CrossRef]
    [Google Scholar]
  12. Gamo T., Masuda H., Yamanaka T. 13 other authors 2004; Discovery of a new hydrothermal venting site in the southernmost Mariana Arc: Al-rich hydrothermal plumes and white smoker activity associated with biogenic methane. Geochemical J (in press
  13. Hugenholtz P. 2002; Exploring prokaryotic diversity in the genomic era. Genome Biol 3: REVIEWS0003
    [Google Scholar]
  14. Inagaki F., Takai K., Kobayashi H., Nealson K. H., Horikoshi K. 2003; Sulfurimonas autotrophica gen. nov., sp. nov. a novel sulfur-oxidizing ε -proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53:1801–1805 [CrossRef]
    [Google Scholar]
  15. Inagaki F., Takai K., Nealson K. H., Horikoshi K. 2004; Sulfurovum lithotrophicum gen. nov. sp. nov. a novel sulfur-oxidizing chemolithoautotroph within the ε - Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 541477–1482 [CrossRef]
    [Google Scholar]
  16. Jannasch H. W., Wirsen C. O., Nelson D. C., Robertson L. A. 1985; Thiomicrospira crunogena sp. nov., a colorless sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Bacteriol 35:422–424 [CrossRef]
    [Google Scholar]
  17. Kuenen J. G., Veldkamp H. 1972; Thiomicrospira pelophila , gen. n., sp. n. a new obligately chemolithotrophic colourless sulfur bacterium. Antonie van Leeuwenhoek 38:241–256 [CrossRef]
    [Google Scholar]
  18. Lane D. J. 1985; 16S/23S sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–176 Edited by Stackbrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  19. Ludwig W., Strunk O., Westram R. 28 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  20. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  21. Nishihara H., Igarashi Y., Kodama T. 1989; Isolation of an obligately chemolithoautotrophic, halophilic and aerobic hydrogen-oxidizing bacterium from marine environment. Arch Microbiol 152:39–43 [CrossRef]
    [Google Scholar]
  22. Nishihara H., Igarashi Y., Kodama T. 1991; Hydrogenovibrio marinus gen. nov., sp. nov. a marine obligately chemolithoautotrophic hydrogen-oxidizing bacterium. Int J Syst Bacteriol 41:130–133 [CrossRef]
    [Google Scholar]
  23. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  24. Ruby E. G., Jannasch H. W. 1982; Physiological characteristics of Thiomicrospira sp. strain L-12 isolated from deep-sea hydrothermal vents. J Bacteriol 149:161–165
    [Google Scholar]
  25. Ruby E. G., Wirsen C. O., Jannasch H. W. 1981; Chemolithoautotrophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents. Appl Environ Microbiol 42:317–342
    [Google Scholar]
  26. Sorokin D. Y., Lysenko A. M., Mityushina L. L., Tourova T. P., Jones B. E., Rainey F. A., Robertson L. A., Kuenen G. J. 2001; Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov. novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580
    [Google Scholar]
  27. Sorokin D. Y., Gorlenko V. M., Tourova T. P., Tsapin A. I., Nealson K. H., Kuenen G. J. 2002; Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio jannaschii sp. nov. novel species of haloalkaliphilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from hypersaline alkaline Mono Lake (California. Int J Syst Evol Microbiol 52:913–920 [CrossRef]
    [Google Scholar]
  28. Takai K., Horikoshi K. 2000; Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17 [CrossRef]
    [Google Scholar]
  29. Takai K., Inoue A., Horikoshi K. 1999; Thermaerobacter marianensis gen. nov. sp. nov. an aerobic extremely thermophilic marine bacterium from the 11,000 m deep Mariana Trench. Int J Syst Bacteriol 49619–628 [CrossRef]
    [Google Scholar]
  30. Takai K., Komatsu T., Horikoshi K. 2001; Hydrogenobacter subterraneus sp. nov., an extremely thermophilic, heterotrophic bacterium unable to grow on hydrogen gas, from deep subsurface geothermal water. Int J Syst Evol Microbiol 51:1425–1435
    [Google Scholar]
  31. Takai K., Inagaki F., Nakagawa S., Hirayama H., Nunoura T., Sako Y., Nealson K. H., Horikoshi K. 2003a; Isolation and phylogenetic diversity of members of previously uncultivated ε - Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174
    [Google Scholar]
  32. Takai K., Kobayashi H., Nealson K. H., Horikoshi K. 2003b; Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:839–846 [CrossRef]
    [Google Scholar]
  33. Takai K., Gamo T., Tsunogai U., Nakayama N., Hirayama H., Nealson K. H., Horikoshi K. 2004a; Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8:269–282
    [Google Scholar]
  34. Takai K., Nealson K. H., Horikoshi K. 2004b; Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the ε - Proteobacteria , isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54:25–32 [CrossRef]
    [Google Scholar]
  35. Takai K., Oida H., Suzuki Y., Hirayama H., Nakagawa S., Nunoura T., Inagaki F., Nealson K. H., Horikoshi K. 2004c; Spatial distribution of Marine Crenarchaeota Group I in the vicinity of deep-sea hydrothermal systems. Appl Environ Microbiol 70:2404–2413 [CrossRef]
    [Google Scholar]
  36. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  37. Wirsen C. O., Brinkhoff T., Kuever J., Muyzer G., Molyneaux S., Jannasch H. W. 1998; Comparison of a new Thiomicrospira strain from the Mid-Atlantic Ridge with known hydrothermal vent isolates. Appl Environ Microbiol 64:4057–4059
    [Google Scholar]
  38. Wood A. P., Kelly D. P. 1989; Isolation and characterization of Thiobacillus thyasiris sp. nov., a novel marine facultative autotroph and the putative symbiont of Thyasira fexuosa . Arch Microbiol 152:160–166 [CrossRef]
    [Google Scholar]
  39. Wood A. P., Kelly D. P. 1993; Reclassification of Thiobacillus thyasiris as Thiomicrospira thyasirae comb. nov. An organism exhibiting pleomorphism in response to environmental conditions. Arch Microbiol 159:45–47 [CrossRef]
    [Google Scholar]
  40. Zillig W., Holz I., Janekovic D. 7 other authors 1990; Hyperthermus butylicus , a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63284-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63284-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error